

Structure-Function Studies

in Heterogeneous Catalysis

Marcos Fernández-García

Instituto de Catálisis y Petroleoquímica ICP-CSIC

Energy-dispersive XAS Workshop

ESRF, Grenoble, February, 2009

XAS-based Structure-Function Studies

Spatial-resolved XAS

• Focal spot 50 - 100 nm; 1 x 1 µm (acquisition time; "in-situ")

Time-dependent XAS

- Ejection, backscattering, and interference ≈ 1 fs
- Synchrotron incident X-ray pulse ≈ 100 ps Brown (J. Chem. Phys. 1999)

Pump-probe XAS

Overview

XAS-based Structure-Function Studies

Spatial resolution in XAS

• Spatial Domain

- Focal spot 50 nm (conventional) 1 μ m (ED) 10² nm \rightarrow 2D, 3D Chemical /Structural mapping

Optical

Concentration/M

Ox. State

•J. Synchr. Radiat. (2006) 13, 351

- Differential technique Femtometre-resolution x 100 !!!!

•Nature (2005) 435, 78

XAS-based Structure-Function Studies

Representative examples; spatial domain

• Behavior of catalytic systems in "industrial conditions"

Spatial-time resolved XAS studies

• Catal. Today. (2008) doi: 10.1016/jcatod.2008.11.002

Overview

XAS-based Structure-Function Studies

Time-resolved XAS

• Time domain analyzed

ps/ns \rightarrow h/days

nature of the phenomenon

- Experimental set-up and procedure
 - microscopic reversibility (aging)

- S/N ratio

Overview

Catalysis: Time-resolved XAS

In-situ conditions (T, P; atmosphere)

XAS set-up

"Conventional" "Quick" "Energy dispersive"

Time domain

min to days 1 s to min 1 ms to 10 s

ED-XAS

- Absence of movement
- Constant energy scale
- Stable focal point / spatial resolution
- High time resolution
- Application
- All catalysts (0.5 wt. % NM)
- Suitable ref. materials
- S/N ratio limited (2nd shell EXAFS)

XAS-based Structure-Function Studies Representative examples; time domain

Minimize "averaging" / "Instantaneous" picture chemical species Similar chemical species (ox. state, local symmetry)
Short existence (intermediate)
High number of species (4,5) ; demanding systems

Cu-Rh/Al₂O₃

• Unique choice

Homogeneous catalysis: exchange of ligands

Heterogeneous catalysis: Redox; T- Lambda TWCs

TPR of Rh-Cu/Al₂O₃ CATALYSTS

Main Characteristics

• Methane conversion (synthesis gas or higher HCs)

 $CO_2 + CH_4 \rightarrow 2CO + 2H_2$

 $\mathrm{XCH}_4 \rightarrow \mathrm{C_XH_{2X+2}} + (\mathrm{x}/\mathrm{2}) \mathrm{\,H_2}$

- Cu beneficial effect:
- Interaction with the Support (Al_2O_3)
- Presence/Absence of Alloy
- Oxidation State changes under reaction

Cu-Rh bimetallic catalysts

Cu/Al₂O₃ XANES-TPR: FACTOR ANALYSIS

Identify and follow Chemical Species during Reaction

$$\{D\} = \frac{n}{\Sigma}C_i \{R_i\} + E$$
$$D = R \cdot C$$

•J. Phys. Chem. (1995) 99, 12565

[**R**r]

Two similar chemical phases CuAl₂O₄-sup CuAl₂O₄-bulk Strong (T,C) overlapping

Cu-Rh bimetallic catalysts

Cu/Al₂O₃ ED-XANES-TPR H_2 consumption

Correct simulation of phys-chem observables

•J. Catal. (1998), 178, 253

Cu-Rh bimetallic catalysts

Rh/Al₂O₃ ED-XANES-TPR H₂ consumption

Rh-O-Al bonds; competition for alumina surface

•Caztal. Lett. (1997), 45, 163

Rh-Cu/Al₂O₃ ED-XANES-TPR

Cu K-edge Chemical Species

Rh/Cu > 0.15 CuAl₂O₄-sup absent Cu(I) intermediate

Rh-Cu/Al₂O₃ ED-XANES-TPR

Rh K-edge Chemical Species

CO₂ Dry Reforming Activity x 3

M-Ce MIXED OXIDES

Main Characteristics

• Chemistry dominated by interface effects between M / Ce species Mixed oxides; modulation redox activation

> • Cu-Ce: Chemical activity WGS: $CO + H_2O \rightarrow CO_2 + H_2$ CO-PROX: $CO + O_2 (H_2) \rightarrow CO_2$

Cu-Ce MIXED OXIDES

Cu K-edge: Redox Chemistry

Cu(II)-Ce(IV) Fluorite Network

 \rightarrow

Cu(O)//CeO_x Binary system

Cu-Ce MIXED OXIDES

CO-PROX; Dependence on Cu Chemical State

Cu-Ce Fluorite Network

Active System Cu(I)-Ce(IV) Interface

Cu(0)//CeO_x Binary system

No Active System Cu(0)

•J. Am. Chem. Soc. (2007), 129, 12054

CONTROL OF POLLUTANTS EMISIONS FROM AUTOMOBILES

The main pollutants from automobile engines are CO, HC and NO

The nature and amount of the emissions vary as a function of air-fuel (A/F) ratio in the engine.

Automobile Catalysts

THREE WAY CATALYSTS (TWCs)

Main Characteristics

• Zr-Ce Component

 $(Zr,Ce)O_x$, $Zr/Ce\approx 1 \rightarrow$ higher OSC and durability.

• Pd-based system

Substitution of Rh CO, HC oxidation (low temperatures) NO elimination

• Dynamic behavior and thermal degradation

Temperature/Lambda Cycling

MULTITECHNIQUE APPROACH

Redox and structural behavior Conventional and Energy dispersive

C₃H₆+CO+NO+O₂

- The presence of the HC diminishes the activity for CO and NO conversion
- PdZC converts CO and C_3H_6 at lower temperatures
- PdZC also reaches 100% of NO conversion at slightly lower temperatures

C₃H₆+CO+NO+O₂

DRIFTS in situ

Catalytic activity: "stoichiometric-static" conditions

C₃H₆+CO+NO+O₂

TWC

XANES in situ

- HC presence affects Pd from RT
 HC-Pd interaction stabilises a π-allylic complex; the active species
 "oxycncbideïjintermediate the qife, Bd⁺ the emissions from low temperatures by stabilizing partially "oxidized" Pd species
 - eliminate CO/"NO" with the help of surface/bulk Pd⁰ reduced species

LAMBDA OSCILLATIONS

Study of the λ window: "redox behavior"

TIME RESOLVED STUDY OF Pd REDOX BEHAVIOR UNDER OSCILLATING CONDITIONS

In situ ED-XANES

Pd K-edge results

Energy position (eV) of the edge and 4f Continuum Resonance (CR) present in XANES spectra. Values relative to the Pd foil.

Sample	Series /Condition	Edge	4f CR
PdA	A/lean	4.3	
	B/rich	0.0	39.5
PdCA	A/lean	4.0	—
	B/rich	0.0	39.6
PdZCA	A/lean	3.7	
	B/rich	0.0	37.9

•PdZC 4*f* CR small red shift: increase of the Pd–Pd nearest distance most likely associated with the dissolution of C atoms in the Pd *fcc* structure

"Different" Oxycarbide/Carbide Chemical Phases

TWC

•Chem. Commun. (2005) 2, 4092-4094

Study of the λ window: "Structural behavior"

TIME RESOLVED STUDY OF Pd STRUCTURE UNDER λ FLUCTUATIONS

ED-EXAFS (Pd K-edge) in situ: CO + NO

R (A)

• Combination of $Pd^0 \rightarrow PdO$ and size/shape variations

TIME RESOLVED STUDY OF Pd STRUCTURE UNDER λ FLUCTUATIONS

ED-EXAFS (Pd K-edge) in situ: CO + NO

• Strong and reversible structural modification under Lambda Oscillations Particles from 30 to 70 NM atoms

TIME RESOLVED STUDY OF Pd STRUCTURE UNDER λ FLUCTUATIONS

Synchronous ED-EXAFS and IR: CO + NO

• Dynamic surface-bulk NM changes during operation

TWC

TIME RESOLVED STUDY OF Pd STRUCTURE UNDER λ FLUCTUATIONS

ED-EXAFS (Pd K-edge) in situ: $CO + NO + O_2$

• **Strong and reversible** structural changes under Lambda Oscillations

 O_2 enhanced phenomenon

Aggregated state under CO: similar Dispersed state under Ox. Conditions: O₂-promoted

• Angew. Chem. Int. Ed. (2007) 46, 8629-8631

TIME RESOLVED STUDY OF Pd STRUCTURE UNDER λ FLUCTUATIONS

ED-XAS (Pd K-edge XANES/EXAFS) in situ: $CO + NO + O_2$

• Non-oxidative redispersion enhanced in presence of oxygen

• Angew. Chem. Int. Ed. (2007) 46, 8629-8631

SYNCHRONOUS TIME-RESOLVED MULTI-SPECTROSCOPIC STUDY

High Energy XRD

- Dynamic surface-bulk NM structural: size, shape, lattice
- Dynamic redox changes

Catalytic Activity

Energy-dispersive XAS

Future challenges

• Spatial Domain (time efficiency)

- 2D, 3D Chemical /Structural nano-mapping

- Angstrom/Sub-angstrom resolution

• Time Domain

- Gas-solid

Solid elemental process kinetics (µs)

- Light-solid

Opening Novel perspectives in Catalysis

- Nucleation and growth of nano-phases
- Dynamic of radiation-mater (photocatalysis)
- "Operando" analysis of TON (10⁴-10⁶ s⁻¹)

ACKNOWLEDGEMENTS

<u>Collaborators</u>

-Dr. M. A. Newton
-- Dr. M. Di Michel
- Dr. A. Iglesias-Juez
-Dr. A. Martínez-Arias
-Dr. C. Belver
- Dr. D. Gamarra
- Dr. A. Kubacka

DRIFTS experiments

- Prof. J. A. Anderson

Ce experiments

- Dr. J.A. Rodríguez - Dr. J.C. Hanson

XAS experiments

All staff at: -7.1, 9.2 and 9.3 at SRS - ID15, BM-29 and **ID-24** at ESRF

Financial sources

EU program for Large Scale Installations Spain-MEC (CTQ2004-3409; CTQ2006-60480) Ce⁴⁺/Ce³⁺ REDOX BEHAVIOR Oxygen Storage Capacity

- The presence of Zr increases the oxygen storage capacity
- This occurs in fresh and aged catalysts

TIME RESOLVED STUDY OF Pd REDOX

• PdO \rightarrow Pd⁰ transformation is delayed by effect of the promoter component, especially when Zr is present

• Zr increases the amount of oxygen transferred by the promoter oxide, limiting the loss of CO conversion in reducing conditions

LAMBDA OSCILLATIONS: DYMANIC "EFFECTS"

