

MULTING BARRANS

NIGHS STREET

The ODE beamline at SOLEIL:

first results on XMCD and EXAFS under extreme conditions and kinetics experiments

Alberta Congeduti, Qingyu Kong, Sébastien Chagnot, Alexandre Monza, Gwenaëlle Abeille, Aurélien Delmotte, Olga Roudenko, and François Baudelet

ODE Bending Magnet Circular Polarization

Fe K edge 7112 eV

au circular polarization rate $I\tau^2$ merit factor

Vertical position

-2

ODE layout: hutches and control rooms

ODE layout: optics and experiment

Optics: Focusing mirror

Winlight System

Useful area : 88 x 1200 mm Coating Pd / Si Slope error : 1.0 µrad RMS on 1m Roughness : 1 à 2 Å RMS Double bender \rightarrow Curvature radius 0.8 km to ∞ Water cooled (InGaSn bath) Focusing 8 mm \rightarrow 35 µm

Optics: Vertical focusing

Real Focus Image

Real Vertical Profile

1 pixel = 7 μ m \rightarrow measured FWHM = 35 μ m

Optics: polychromator focusing

Optics: polychromator focusing

	σ _x (μm)	σ _z (μm)	σ' _x (µrad)	σ' _z (µrad)
Soleil	60.1	24.9	134.8	2.1
Lure	2500	1580	1070	170

Optics: polychromator focusing

Thierry Moreno and Mourad Idir

Optics: bender mechanical improvements

- Better contact between blade and benderDecoupling twisting and bending movements
- \Rightarrow Very small spot size

Optics: 311 focus @ Fe K-edge

Focus Image

Horizontal Profile

1 pixel = 7 μ m \rightarrow FWHM 20 μ m

Optics: high sensitivity to slope errors

More details in Thierry Moreno's talk

Optics: more homogeneous focus with the new Si 311 blade

ODE layout: optics and experiment

Sample environment

Multipurpose sample environment adapted to various kinds of studies: pressure, temperature, magnetic field, gas or liquid environment

Sample Environment:

in situ Pressure Measurement

Results: EXAFS STUDY OF a-Ge AT HIGH PRESSURE

ODE's first measurement in Diamond Anvil Cell (0 - 10 GPa) at the Ge K-edge (11100 eV)

First high-pressure measurements in a diamond anvil cell (DAC) in dispersive mode using ODE beam-line at Soleil. Ge K-edge XAS a-Ge films of about $3 \times 3 \mu m$ thickness (obtained by evaporation).

The films were amorphous as confirmed by XRD.

Spectra taken with less than 1 s of integration.

STRUCTURAL MODIFICATIONS:

- A clear transition is evidenced above 7.9 GPa.
- The spectra at 8.3 GPa and 9.8 GPa are different.
- •The weak XAS structural signal obtained at 8.3 GPa is compatible with the presence of strong structural disorder (different amorphous phase).
- •The strong signal at 9.8 GPa is compatible with a crystalline structure with elongated firstneighbour distances (like Ge II)

• At ~ 8 GPa: the surface shows a metal-like reflectivity, loss of the Raman signal and strong diffuse scattering.

Di Cicco et al. Phys. Rev. B 78, 033309 (2008)

Andrea Di Cicco, Alberta Congeduti, Federica Coppari, Jean Claude Chervin, Francois Baudelet, Alain Polian

Sample Environment: Drilled Diamond Anvil Cell for Low Energy HP measurement

Drilled diamond cell \Rightarrow thickness reduced of a factor 2.5 \Rightarrow e.g. a factor ~150 on the transmitted intensity at the Mn k-edge

F. Rodolakis (LPS / SOLEIL), J.-P. Rueff (SOLEIL / LCPMR), M. Marsi (LPS)

Sample Environment:

in situ Pressure Measurement

2T Magnetic Coil for XMCD

+ Fast Feadback

Results: Magnetic transitions under pressure in magnetite

0 - 30 GPa, 2T

Transition from indirect to

direct spinel at 8 GPa

G. Kh. Rozenberg, et al.

PRL 96, 045705 (2006)

Verwey transition disappears at 8 GPa

S. Todo et al. J. Appl. Phys. **89**, 11 7347 (2001)

Only an abrupt magnetic transition between 12 and 16 GPa

Yang Ding et al. PRL 100 045508 (2000)

No transition from indirect to direct spinel but a continuous decrease of the magnetic moment between 8 and 30 GPa

F. Baudelet, O. Mathon, J.P.Itié, S.Pascarelli, A.Polian, M. d'Astuto and J.C. Chervin

Results: XMCD on Co at HIGH PRESSURE

0-94 GPa, 2T

Anomalous c/a ratio behaviour at HP

Olivier Mathon, Sakura Pascarelli, François Baudelet, Alexandre Monza, Matteo D'Astuto, Daniele Antonangeli, Jean-Paul Itié, Emma Pugh, Jean-Claude Chervin, Alain Polian,

Magnetic moment vanishes at HP?

XMCD

Beamline limit → ID24 to get over In good agreement with lota *et al.*

Results: Kinetics of iron redox in aluminosilicate

Temperature variation induces a change in the redox state. It can be followed by: Changes in the White Line Changes in the Pre-Peak

energy eV

Benjamin Cochain, Daniel R. Neuville, Dominique de Ligny, Denis Testemalem, Eozen Strukelj, Pascal Richet

Results: Time-resolved reduction of ReO_x/Al₂O₃ catalysts

Supported rhenium oxide is very selective towards dimethoxymethane during methanol partial oxidation. It has been proposed that an original redox couple (Re^{VI}-Re^{IV}) could be at the origin of this behavior.

Experimental setup: Powdered catalyst in a Lytle-type cell, with a mica window for Raman. EXAFS (Re L3-edge) spectra recorded on ODE beamline (ca. 2 spectra/minute).

XANES clearly evidence a fast and direct reduction from Re^{VII} to Re⁰ between 293°C and 303°C, well confirmed by the EXAFS analysis

Elise Berrier, Sylvain Cristol, Camille La Fontaine, Valérie Briois, Francoise Villain

Developments in progress

- XMCD @ 7T, 2K, HP
- XRD/XAS combination
- Raman/XAS combination
- Stopped Flow
- New benders and blades for the polychromator (220 and 111, 311 with lower slope error)
- Fluorescence measurements
- Turbo EXAFS for diffusing samples' kinetics
- Acquisition Graphic Interface and Live Energy Calibration

THANKS FOR YOUR ATTENTION!

Developments in progress: XMCD @ 7T, 2K, HP

Developments in progress: Combination of XAS/XRD

• First attempt: crystallization of a-Ge upon decreasing pressure at 6 GPa

Federica Coppari, Emiliano Principi, Alberta Congeduti, Sebastien Chagnot and Andrea Di Cicco

Effect of diffusing materials on resolution

Informatics interfaces

• Kinetics

Qingyu Kong, Gwenaelle Abeillé, ...

Informatics interfaces

• XMCD

Qingyu Kong, Gwenaelle Abeillé, ...

Informatics interfaces

• Kinetics

Qingyu Kong, Gwenaelle Abeillé, ...

Energy calibration

Calibration of spectra from DXAS beamlines

M.P. Ruffoni and R.F. Pettifer J.Synchrotron Rad. (2006). 13, 489-493

Highly multi-modal optimization problem

Find
$$\{c_k, a_l, b_m\}$$
, $k = 1, ..., K$, $l = 1, 2, m = 1, ..., M$
so as to $\min_{c,a,b} \sum_i \left\langle \Phi(\overline{c}, \overline{a}, \overline{b})(x_i, y_i) - (E_i^{ref}, A_i^{ref}) \right\rangle^2$

The solution found by a local algorithm (such as Levenberg-Marquardt) is <u>very</u> sensitive to the starting point

Improved calibration tool

 Finding a good starting point given measured and reference spectra.

2. A slower <u>global</u> optimization algorithm replaces quick local optimization (L.-M.) when the latter one fails.

The optimization method, based on *Covariance Matrix Adaptation*, avoids local optima traps and achieves satisfactory calibration in more cases. (Many thanks to **Nikolaus Hansen**, INRIA Saclay!)

Contact: olga.roudenko@synchrotron-soleil.fr

Live Energy Calibration

Olga Roudenko, Julien Malik ...

Developments in progress

- XMCD @ 7T, 2K, HP
- XRD/XAS combination
- Raman/XAS combination
- Stopped Flow
- New benders and blades for the polychromator (220 and 111, 311 with lower slope error)
- Fluorescence measurements
- Turbo EXAFS for diffusing samples' kinetics
- Acquisition Graphic Interface and Live Energy Calibration

THANKS FOR YOUR ATTENTION!

Beamline specification

EXAFS XANES and XMCD Resolving power Focus size: Detection mode:

Source: First mirror: polychromator: High temperature limit:

Cryogenic temp. limit:

Pressure:

Magnetic field:

Measurements from 5 keV to 25 keV From 3.5 keV to 25 keV $E/\Delta E$: 3 10⁴ for Si₃₁₁ 0.7 10⁴ for Si₁₁₁ 40 µm x 40 µm FWHM Transmission mode with a photodiode array or a CCD camera Fluorescence mode

Bending magnet 1.2 meter long Ir and Rh bent mirror Bragg geometry, Si₁₁₁, Si₃₁₁ 1100 K under controlled atmosphere for heterogeneous catalysis 800 K for high-pressure measurements Down to 2 K for ambient and high pressure conditions Up to 100 GPa in quasi hydrostatic conditions More than 100 GPa in non-hydrostatic conditions Up to 6T

Future development: double beam XMCD ?

Optics: bender mechanical improvements

Zn