

An Energy Dispersive X-ray Absorption and Diffraction Investigation of Photomagnetic CoFe Prussian Blue Analogues.

Anne Bleuzen¹, François Baudelet², Jean-Paul Itié² ¹Laboratoire de Chimie inorganique-ICMMO-Orsay

²Synchrotron SOLEIL-Gif sur Yvette

CoFe Prussian Blue Analogs

 $Rb_{2}Co_{4}[Fe(CN)_{6}]_{3.3} \cdot 11H_{2}O$

Photomagnetic effect Promising candidates for future molecular memories

J. Am. Chem. Soc., 6648-6652, 122, 2000., Eur. Phys. Chem., 115-124, 14, 2000.

OUTLINE

1- Study of the States implied in the Photomagnetic Effect :

An EDXAS and XMCD investigation at low temperature before and after irradiation.

2 - Control of the Photomagnetic Effect :

Variable Pressure X-ray Absorption and Diffraction study.

Co-ligand distance

EDXAS

1) Small amount of matter

2) irradiation of the sample at low temperature

J. Am. Chem. Soc., 2001, 123, 12544.

Structure and electronic structure of the States implied in the Photomagnetic Effect

Control of the switching properties

Co-ligand distance

Control of the potential wells energy position : High temperature bistability \Leftrightarrow close energy position

Chemical Control : C⁺ = Cs⁺, x varies

X Closer energy of the Co^{III}-Fe^{II} and Co^{II}Fe^{III} states, TR increases But decrease of the magnitude of the switching properties

$$Co(NC)_y(OH_2)_{6-y}$$

J. Am. Chem. Soc., 12536-12543, 123, 2001.

Chemical Control : x = 1.8, C⁺ varies

C_{1.8}Co₄[Fe(CN)₆]_{3.3 0.7}

Competitive interactions Variable Pressure X-ray Absorption and Diffraction study

Variable Pressure Study

С

 $Co_4[Fe(CN)_6]_{8/3}$ •18H₂O (\mathbf{C}_{0}) No alkali metal ion

Co^{II}Fe^{III}

 $Cs_2Co_4[Fe(CN)_6]_{3.3}$ •11H₂O (Cs_2) 2 big Cs⁺ ions

Co^{III}Fe^{II}

Variable Pressure EDXD

J. Phys. Chem. C, *112*, 17709-17715, **2008**.

Cell Parameter Pressure Dependence

C₀ : 0-1 GPa C₀ cell parameter reaches the Cs₂ one !!! Pressure-induced electron transfer ?

Cs2 and C0 > 1 GPa Distortion from the cubic structure.Rhombohedral FPseudo cubic spaceJ. Phys. Chem. C, 112, 17709-17715, 2008.

 $\text{Col}_{4}^{\text{II}}[\text{Fe}^{\text{III}}(\text{CN})_{6}]_{2.7} \bullet 18\text{H}_{2}\text{O} \rightarrow \text{Co}^{\text{III}}_{2.7} \text{ Co}^{\text{II}}_{1.3}[\text{Fe}^{\text{II}}(\text{CN})_{6}]_{2.7} \bullet 18\text{H}_{2}\text{O} \qquad 0.7 - 2 \text{ Gpa } !!$

Vormalized Absorbance

The electron transfer is total !!! Minimum amount of CN bridges : TR should be high !!! J. Phys. Chem. C, 112, 17709-17715, 2008.

Chronology of the Structural and Electronic Events

The strong cell parameter decrease precedes the $Co^{II}(HS) \rightarrow Co^{III}(LS)$ transformation

Interplay between Structural and Electronic Events

0-1 GPa

Co K edge 1-1.8 GPa

2-4 GPa

J. Phys. Chem. C, 112, 17709-17715, 2008.

Interplay between Structural and Electronic Events

0-1 GPa

Tilt of the transition metal ion coordination polyhedra

Perspectives

effect on the magnetic

properties : XMCD

Study of the photomagnetic effect Exhibited by the alkali cation free CoFe PBA under applied Pressure.

Variable Pressure and temperature XAS study of C₀ (Co, Fe)

Acknowledgement

Synchrotron radiation

F. Villain, V. Briois

C. Cartier dit Moulin, G. Champion

M.A. Arrio, Ph. Sainctavit

F. Fortuna, J.-J. Gallet

J.P. Itié, P. Münsch

F. Baudelet

E Dartyge, C. Georgetti

P. Roy

Chemistry

V. Escax

C. Lomenech

P. Higel

S. Bidault

A. Bachschmidt

J.-D. Cafun

G. Fornasieri

M. Verdaguer

Chemical Control : C⁺ = Cs⁺, x varies

$\mathbf{Fe^{II}}_{\mathbf{F} \in \mathbf{W}} = \mathbf{Fe^{II}}_{\mathbf{F} \in \mathbf{W}} = \mathbf{Fe^{II}}_{\mathbf{F} \in \mathbf{W}}$

Col. C. Cartier dit Moulin, M. A. Arrio

XAS at the Co L_3 edge

Role of the cyanide bridge as an active electron transfer bridge Redox potential modulation

Angew. Chem. Int. Ed., 44, 4798-4801, 2005, Angew. Chem. Int. Ed., 46, 1-4, 2007.