Hard x-ray RIXS study on high-Tc cuprates and related compounds

Charge excitation associated with charge ordered state

> Shuichi Wakimoto Japan Atomic Energy Agency

Collaborators

Hiroyuki KimuraKenji IshiiKazuhiko Ikeuchi(Tohoku Univ.)(JAEA/Spring-8)(JAEA/Spring-8)

@ Wild Fire Steak House

Jun'ichiro Mizuki, Kazuhisa Kakurai (JAEA) Masaki Fujita, Kazuyoshi Yamada (IMR) Tadashi Adachi, Youji Koike, Yukio Noda (Tohoku Univ.) Aimon Said, Yuri Shvyd'ko (APS)

CONTENTS

1. Introduction

a. Hard x-ray RIXS

- b. Stripe order in the 214 compounds
- 2. Experiments

a. Samples

b. Instruments (MERIX, BL11XU)

3. Results

a. Cuprates

La_{2-x}Ba_xCuO₄ x=0.125, 0.08

 $La_{2-x}Sr_{x}CuO_{4} x=0.12$

b. La_{5/3}Sr_{1/3}NiO₄

c. Ladder system (work by Yoshida et al.)

4. Summary

Hard x-ray RIXS (Cu, Ni, ... K-edge)

CT excitation resonates near the photon energy where XAS peak appears.

Charge transfer excitation

Recent development

Typical energy resolution of RIXS Instruments : 300 ~ 400 meV (APS 9ID-B with 1m-arm, SP8 BL11XU, BL12XU, ...)

In-gap state

 Interpreted in several ways. Impurity band Polaron band d-d excitation Stripe band

. . .

Stripe order

Schematic picture of stripe band

- •This configuration produces a stripe band which is *quarter-filled*.
- •System is metallic.

Can we detect charge excitations to the stripe band?

Motivation

Ingap state by stripe order?

Dynamics of stripes? relation to the superconductivity strongly correlated electron system cf. CDW by electron-phonon coupling

$La_{1.875}Ba_{0.125}CuO_4$ sample

Single crystal

- •Grown by TSFZ method.
- •Cut in a disk shape with the c-axis normal to the disk.
- •Stripe order was checked by neutron.

$La_{5/3}Sr_{1/3}NiO_4$ sample

Single crystal

- •Grown by TSFZ method.
- •Cut in a disk shape with the c-axis normal to the disk.
- •Stripe order was checked by neutron.

MERIX Spectrometer@30-ID.APS

(LSNO experiments)

Ge(337) diced analyzer: $\Delta E = 115$ meV

•Fine energy resolution $Cu \text{ K-edge : } \Delta \text{E}=110 \text{ meV}$ $Ni \text{ K-edge : } \Delta \text{E}=150 \text{ meV} (Ge(642) \text{ analyzer})$ MERIX mirror. Focus: 5 μ m (V) ×40 μ m (H)

High efficiency by line detector

BL11XU at SPring-8 (L(B,S)CO experiments)

- Horizontal Scattering geometry (ε_i // scattering plane)
- Polarization analyzer
- Sample condition
 - ✓ Temperature 10 400 K
 - ✓ Magnetic Field < 8 T</p>

Energy resolution in practical set up

element	mono.	analyzer	ΔE (meV)
Cu		Ge(733)	~ 400
Mn	Si (400)	Ge(531)	~ 300
V		Ge(422)	~ 300

IXS beamlines at SPring-8

: Contract Beamlines

Accelerator beam diagnostic lines ☆ ○ ◇ □ : Planned or Under Construction

: RIKEN Beamlines

BL11XU ... JAEA

BL12XU ... Taiwan

(contact beamlines)

charge excitations

 $\Lambda F \sim 100 \text{ meV}$

NSRRC

BL11XL

- BL22XU JAEA Quantum Structural Science Medical and Imaging I BL20B2 ¥ medium resolution (Japan Atomic Energy Agency) Medical and Imaging II BL20XU ¥ BL23SU JAEA Actinide Science Engineering Science Research | BL19B2 ¥ (Japan Atomic Energy Agency) BL24XU Hyogo ID (Hyogo Prefecture) RIKEN SR Physics BL19LXU . ¥ BL25SU Soft X-ray Spectroscopy of Solid RIKEN Coherent Soft X-ray Spectroscopy BL17SU + BL26B1 RIKEN Structural Genomics I Industrial Consortium BM BL16B2 ● (Industrial Consortium) BL26B2 RIKEN Structural Genomics II Industrial Consortium ID BL16XU ¥ BL27SU Soft X-ray Photochemistry (Industrial Consortium) ¥ BL28B2 White Beam X-ray Diffraction WEBRAM BL15XU . 27 26 25 (National Institute for Materials Science) BL29XU RIKEN Coherent X-ray Optics // -50 Engineering Science Research II BL14B2 ¥ 21 BL32XU RIKEN Targeted Proteins JAEA Materials Science BL14B1 ● SPring. BL32B2 Pharmaceutical Industry (Japan Atomic Energy Agency) (Pharmapeutical Consortium for Protein Structure Analysis) Surface and Interface Structures BL13XU ¥ O BL33XU TOYOTA NSBRC BM BL12B2 (TOYOYA Central B&D Labs., Inc.) 35 (National Synchrotron Radiation Research Center BL33LEP Laser-Electron Photon Beamline Map Зб NSRRC ID BL12XU nchrotron Radiation Research 37 BL35XU High Resolution Inelastic Scattering Total number of beamlines : 62 (61+1) JAEA Quantum Dynamics BL11XU 38 BL37XU Trace Element Analysis (Japan Álomic Energy Agency Insertion Device (6 m) 39 12 High Pressure Research BL10XU A ¥ BL38B1 Structural Biology III Insertion Device (30 m) : 4(-----40 Nuclear Resonant Scattering BL09XU ¥ BL38B2 Accelerator Beam Diagnosis Bending Magnet : 23 (41 Hyogo BM (Hyogo Prefecture) BL08B2 ● ¥ BL39XU Magnetic Materials · Others 42 High Energy Inelastic Scattering BL08W ¥ ¥ BL40XU High Flux Univ-of-Tokyo BL07LSU O ¥ BL40B2 Structural Biology II (The University of Tokyo) ¥ BL41XU Structural Biology I Accelerator Beam Diagnosis BL05SS High Energy X-ray Diffraction BL04B2 ¥ BL44XU Macromolecular Assemblies High Temperature and High Pressure Research BL04B1 ¥ (Institute for Protein Research, Osaka University) Frontier Soft Matter BL03XU O BL44B2 RIKEN Structural Biology II (Frontier Soft Matter Beamline Consortium) Main Bldg. BL45XU RIKEN Structural Biology I Powder Diffraction BL02B2 ¥ ✗ BL46XU Engineering Science Research III Single Crystal Structure Analysis BL02B1 ¥ ¥ BL47XU HXPES+MCT XAFS BL01B1 ¥ high resolution Public Beamlines
 - BL35XU ... public beamline $\Delta E \sim 1 \text{ meV}$ phonon

Scattering Geometry

$$\label{eq:lasses} \begin{split} La_{1.875}Ba_{0.125}CuO_4\\ La_{1.92}Ba_{0.08}CuO_4\\ La_{1.88}Sr_{0.12}CuO_4 \end{split}$$

Overall spectra

Comparison between $(0, 0) \& q_s$

q - dependence (2)

 $La_{5/3}Sr_{1/3}NiO_4$

Comparison to the non-doped La₂NiO₄

q - dependence (1)

q - dependence (2)

Experimental results summary

Cuprates

BL11XU 300meV resolution

- In-gap state is not observed.
- Continuum intensity increases at

 q_s for LBCO 0.125 and LSCO 0.12.

LSNO 1/3

MERIX 150meV resolution

- In-gap state is clearly observed.
- •Gap-like structure is absent at q_s .

Both nickelate and cuprate, stripe order gives additional spectral weight at q_s around 1 eV.

Possibilities

Summary

- Hard x-ray RIXS on charged ordered system.
- Charge ordered compounds show additional RIXS spectra at q_s at ~1eV.
- More doping dependence, more material dependence will be studied soon.
- Soft x-ray RIXS can be an candidate to study this feature.