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Hard x-ray RIXS (Cu, Ni, … K-edge)
Principle Observation

Tsutsui et al.

The RIXS process involves
    an intermediate state where 1s
    electron is excited to 4p.
In this process, many type of
   charge excitations are induced.
Charge transfer (CT) type insulator
   -CT excitation (O2p to Cu3d) is
    very sensitive to this process.
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CT excitation resonates near the
photon energy where XAS peak
appears.

Y.-J. Kim et al.
La2CuO4



Charge transfer excitation

Advantage of RIXS 
Being able to study q-dependence

CT gap

Optical measurement
     one of the most important
     probes to study CT gap.

Uchida et al.

Wakimoto, Kim et al.

Cu-K edge RIXS observes …

Clear CT gap in the non-doped
  sample.
Spectral weight shifts to lower
  energy as doping increases.

Consistent CT gap in the
  non-doped sample at (0 0).

As doping increases,
  continuum-like excitation
  at the lower energy.

q-dependences of charge
  transfer excitations.



Recent development
Typical energy resolution of RIXS Instruments : 300 ~ 400 meV

(APS 9ID-B with 1m-arm, SP8 BL11XU, BL12XU, …)

Recent development 
   towards finer energy resolution

APS 9ID-B with 2m-arm

APS 30ID MERIXS

Cu K-edge : 
    ΔE=118 meV

Cu K-edge : 
    ΔE=110 meV
Ni K-edge : 
    ΔE=150 meV
          :
          :

Small ΔE will …
     reduce the elastic tail.
     help us to see smaller structure.

New aspect …

LSCO 17% data
ΔE=400 meV

   Any structure in 
the CT peak?

In-gap state?

We are aiming here!



In-gap state
 Optical conductivity

Free carrier
In-gap state

Uchida et al.

In-gap state

Ido et al.

 When holes are doped into
     the system, in-gap state
     appears and grows with
     doping.

 Interpreted
   in several ways.
        Impurity band
        Polaron band
        d-d excitation
        Stripe band

…

 This was reported by various 
     experimental probes.
        –Optocal measurements
        –Photo-emission
        –x-ray absorption
                      and so on …



Stripe order

superconductivity

Cu
O

La2-xBaxCuO4

Cu
O

La(Ba)

Non doped
(Electron cannot move

due to strong correlation)

Introduction of holes
( La3+  Ba2+ )

Hole

Hole doping

Electrons order in
the stripe form

Further hole
doping
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Schematic picture of stripe band
La2-xBaxCuO4La2-xSrxNiO4
x = δ = 1/8

C
ha

rg
e 

4a
te

t

S
pi

n 
8a

te
t

x = ε = 1/3

Cha
rge

 1.
5a ort

ho

Spin

3a ort
ho

In parallel stripe of cuprates
     one hole every 2 Cu sites.
This configuration produces a stripe band
     which is quarter-filled.
System is metallic.

In diagonal stripe of nickelates,
     one hole every Ni site.
In the stripe,
     Ni3+  one electron in eg
     (Mott insulator.)
This configuration produces a stripe band
     which is empty.
System is insulator.

Can we detect charge excitations
to the stripe band?

Homes et al. Tranquada



Motivation

◆ Ingap state by stripe order?

◆ Dynamics of stripes?
relation to the superconductivity
strongly correlated electron system

cf. CDW by electron-phonon coupling



Experiments
Samples

La5/3Sr1/3NiO4
La1.875Ba0.125CuO4
La1.92Ba0.08CuO4
La1.88Sr0.12CuO4

Instruments
MERIX@APS Nickelate
BL11XU@SP8 Cuprates
Horizontal scattering plane

Robust stripe order

No stripe order
Stripe order expected

0.1 0.2 0.30

La2-xSrxCuO4Axe et al. Takagi et al.



La1.875Ba0.125CuO4 sample
Single crystal
   Grown by TSFZ method.
   Cut in a disk shape with the c-axis normal to the disk.
   Stripe order was checked by neutron.
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Fujita et al.



La5/3Sr1/3NiO4 sample
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   Grown by TSFZ method.
   Cut in a disk shape with the c-axis normal to the disk.
   Stripe order was checked by neutron.



MERIX

Fine energy resolution
Cu K-edge : ΔE=110 meV
Ni K-edge : ΔE=150 meV (Ge(642) analyzer)

High efficiency by line detector

(LSNO experiments)



BL11XU at SPring-8

εi

• Horizontal Scattering geometry
(εi // scattering plane)

• Polarization analyzer
• Sample condition
 Temperature 10 - 400 K
 Magnetic Field < 8 T ~ 300Ge(422)V

~ 300Ge(531)Mn

~ 400Ge(733)

Si (400)

Cu

ΔE (meV)analyzermono.element

Energy resolution in practical set up

(L(B,S)CO experiments)



IXS beamlines at SPring-8

• high resolution
BL35XU … public beamline
ΔE ~ 1 meV
phonon

• medium resolution
BL11XU … JAEA
BL12XU … Taiwan

NSRRC
(contact beamlines)
ΔE ~ 100 meV
charge excitations

BL11XU

BL12XU



Scattering Geometry
Nd2CuO4 momentum scan along c*-direction

c
qQ
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ki

Transverse geometry

q//CuO2

• Elastic intensity is minimum at 2θ = 90°.
Clear gap feature at Q = (0,0,12.5).
q-scan in transverse geometry
⇒ work well for low-dimensional materials

Ishii et al.



La1.875Ba0.125CuO4

 La1.92Ba0.08CuO4

 La1.88Sr0.12CuO4



Ei - dependence : La1.875Ba0.125CuO4
Fluorescence @ RT
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Overall spectra



Comparison between (0, 0) & qs

Stripe spacing : 
         ds = (0, 4a)
Stripe q : 
     qs = 2π(0, 1/4)



Excitation at qs

1 eV 2 eV

D

C D



q - dependence (2)
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La5/3Sr1/3NiO4



Ei - dependence
Fluorescence @ RT
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Comparison to the non-doped La2NiO4
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In-gap state

Ido et al.

In-gap peak

Ei = 8347 eV, 10K

CT peakCT peak



q - dependence (1)
Stripe spacing : ds = (3a/2, 3a/2)
          Stripe q : qs = 2π(2/3, 2/3)



q - dependence (2)
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Experimental results summary
La1.875Ba0.125CuO4

Both nickelate and cuprate, stripe order gives
additional spectral weight at qs around 1 eV.

LSNO 1/3
MERIX 150meV resolution
In-gap state is clearly observed.
Gap-like structure is absent at qs.

Cuprates
BL11XU 300meV resolution
In-gap state is not observed.
Continuum intensity increases at
  qs for LBCO 0.125 and LSCO 0.12.
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Possibilities
Collective charge excitation?

Stripe band excitation?

Cuprae case
Kaneshita et al.
PRL 88,115501.

Dynamic fluctuation of charge
stripes produces collective charge
excitation.
In principle, this should be observed
in non-renonant scattering.

The excitation at the
stripe-q corresponds to
the charge excitation
between charge stripes.

Homes et al.

May such excitation produces small gap??
(Gap < 340 meV)
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Same or diifferent ?

Other origin?
Does introduction of the stripe structure into the
models account for the observation?



Summary
• Hard x-ray RIXS on charged ordered system.
• Charge ordered compounds show additional

RIXS spectra at qs at ~1eV.

• More doping dependence, more material
dependence will be studied soon.

• Soft x-ray RIXS can be an candidate to study
this feature.


