Finite Element analysis in X-ray optical systems

L Zhang (zhang@esrf.fr)
ESRF

Grenoble, France
24 - 25 February 2009
Introduction

X-ray optics
- Monochromator crystal
- First mirror (HHL)
- Bent focusing mirror (KB, …)
- Compound refractive lens (CRL)
- Sagittal focusing mirror
- Piezo bimorph mirror
- Bending devices
- …

Analyses
- Cooling and geometry optimization
- Thermal deformation
- Performance vs heat load
- Thermal stress analysis
- Surface shape and profile optimization
- Mechanical stress analysis
- Performance vs energy tuning (bending forces)
- Bent shape
- Multi-electrodes application (gap, voltage distribution)
- …

Guidelines, data for
- Design, Manufacturing, Mounting, Operation

Data for
- Ray-tracing
- Dynamic diffraction simulation

Boundary conditions (P, hcv, Tf, F, D, V, …)
Mirror - FE model (ID20 mirror)

- **Geometry of the mirror LxWxT**: 1000x70x50 mm³
- **Absorbed power**: 50 W
- **Primary slits HxV**: 1.5x0.8 mm²
- **Grazing angle**: 3.5 mrad
- **Side cooling by water at 290 K**

1998
Mirror - FEA results (ID20 mirror)

Temperature in K

Vertical displacement
Uy (mm)

\[
\frac{1}{R_{\text{thermal}}} = \frac{1}{R_{\text{beamOFF}}} - \frac{1}{R_{\text{beamON}}}
\]

<table>
<thead>
<tr>
<th>bending force F (N)</th>
<th>45</th>
<th>80</th>
<th>150</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{thermal}}) (km)</td>
<td>23.2</td>
<td>21.2</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{thermal}&FEA}) (km)</td>
<td>22</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hcv (FEA) (W/m²/K)</td>
<td>500</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

measurement #: "ID20-Test of mirror1 curvature", 1/04/98, by Ch. Vettier
Monochromator crystal - FEA vs Test results

- Channel-cut Si crystal monochromator
- Liquid nitrogen cooling from 2 sides
- Beam size 10.35 mm (H) x 2.3 mm (V)
- Bragg angle 14°
- Heat load from undulators U46 + U17: Gaussian distribution, volume absorption

\[
FWM_{th} = \sqrt{(\theta_{th} + \theta_0)^2 + FWHM_{intr}^2}
\]

- Good agreement between the calculation and experimental results
- Local minimum in thermal slope error

Zhang L. et al., JSR (2003). 10, 313-319
Monochromator crystal - FEA results

Thermal slope error versus absorbed power in 4 different cooling coefficients (W/m²/°C)

Slope error independent of the cooling coefficient in the linear region \(\Rightarrow \) direct cooling (high \(h \)) is not always necessary

Slope error varies significantly with the cooling coefficient in the non-linear region.

Slope \(~\) P curve can be divided into 3 regions:

- Linear region: \(\text{slope} \sim P \)
- Transition region: a local minimum
- Non-linear region: \(\text{slope} \sim P^{4.6} \)
Piezoelectric active mirror

- **Piezoelectric bimorph: spherical shape**
- **Active mirror**
 - Spherical shape (mono-electrode)
 - Toroidal shape (multi-electrodes)
 - Active: variation of the radius of curvature by changing electric voltage
- **FEA key points**
 - electrode distribution, gap effects for a required shape
 - Piezoelectric matrix, elastic coefficient matrix

Comparison with experiments

Piezoelectric active mirror (2)

- Multi-electrodes → elliptical shape
- Gap between electrodes, gap induced residual slope error

Slope deviation = slope_{FEA} - slope_{ref}

![Electric field distribution (Volt)](image)

- **Parameters:**
 - gap = 3 mm, rod length = 22.5 mm, p = 0.3 m, q = 3 mrad
 - ANSYS 5.0, time = 1, VOLT = 2000
 - Color scale: 0, 222, 444, 666, 888, 1111, 1333, 1555, 1777, 2000

![Graph](image)

- PV and RMS slope deviation vs gap (mm)
Bending devices - Flexor bender

- Flexor bender widely used in KB micro-focusing mirror device
- FEA used to
 - optimize the position and the size of mirror
 - evaluate bending forces
 - Simulate the performance

\[
\frac{d^2 z}{dx^2} = \frac{h}{EI} \left(\frac{(F_1 + F_2)}{2} (1 - \delta) + \frac{(F_2 - F_1) x}{L} (1 - \delta_x) \right)
\]

Bending devices - Flexor bender (2)

- 2 different bending moments / rectangular mirror → $1/R(x) \sim P1(x)$ linear function of x
- Rotation axis should be on the neutral plane of the mirror - to avoid bending capability loss
Sagittal focusing crystal - anticlastic deformation - ribs

1999
Compound Refractive Lens - failure analysis

- Beryllium CRLs installed in 1997 in FE
- CRL with 4 holes of 1mm in diameter to focus 8 keV X-ray beam
- Bonded to a water cooled copper block
- Failure observed on Dec-2003: sudden change of focusing capability

FEA results:
- $T_{\text{max}} = 873 \, ^\circ \text{C}$
- $\sigma_{V&M\text{max}} = 564 \, \text{MPa} \rightarrow \text{high stress, large plastic deformation}$
- Thermal fatigue failure

Total absorbed power: 139 W (-20% ?)
Cooling coefficient $h_{\text{eff}} = 0.005 \, \text{W/mm}^2/{^\circ \text{C}}$

Phase contrast images
- Damaged lens
- New lens

CRL - Design optimization

<table>
<thead>
<tr>
<th></th>
<th>present</th>
<th>optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>mm</td>
<td>2</td>
</tr>
<tr>
<td>t_{thin}</td>
<td>mm</td>
<td>0.1</td>
</tr>
<tr>
<td>V_{bm}</td>
<td>mm</td>
<td>4</td>
</tr>
<tr>
<td>h_{eff}</td>
<td>W/mm²/°C</td>
<td>0.005</td>
</tr>
<tr>
<td>T_{max}</td>
<td>°C</td>
<td>873</td>
</tr>
<tr>
<td>σ_{VMmax}</td>
<td>MPa</td>
<td>564</td>
</tr>
</tbody>
</table>
- N number of parabolic lenses (Be, Al, ..., 15um, 0.56, 1.4W)
- Cooled or not cooled?
- How cooled?

- Copper plate
- Indium foil
- Bronze frame
- Be or Al lens

- Outer ring cooling
KB mirror profile optimization

Grazing angle $\theta=8\text{mrad}$

- Aspheric shape: $R(x)$ varies strongly with x
- Highly bent:
 - Radius of curvature reaches $R_{\text{min}}=11.2\text{m}$ at $x=28\text{mm}$
 - Slope of bent mirror in the range of a few of mrad

- Which profile of the mirror?
- How to determine the profile?
KB mirror profile optimization - algorithm

From beam theory:

\[
W(x) = \frac{1}{2} \left(F_1 \cdot L_{arm-1} + F_2 \cdot L_{arm-2} \right) \left(F_2 \cdot L_{arm-2} - F_1 \cdot L_{arm-1} \right) \cdot \frac{x}{L}
\]

\[
\frac{1}{12} E \cdot t^3 \cdot \frac{1}{R(x)}
\]

1. Initial width calculated by Eq.(A): \(W_1(x) \)
2. bent mirror shape calculated by FEA as well as curvature along the axis \(x \) on the mirror surface \(f_n(x) = \frac{d^2 U}{dx^2} \)
3. Comparison with ideal shape \(f_{ref}(x) = \frac{1}{R(x)} \)
4. Correction of the mirror width as :

\[
W_{n+1}(x) = W_n(x) \cdot \frac{f_n(x)}{f_{ref}(x)}
\]

5. 4~5 iterations (repeat steps 2-4) give stabilized results
KB mirror profile optimization - results

- by beam theory
- by FEA
- Final proposed

Residual slope error of 3 profiles
(HFM: p=36m, q=83mm, θ=8 mrad, F1=F2=16N)

Residual slope error of mirrors with 3 profiles
(HFM: p=36m, q=83mm, θ=8 mrad, F1=F2=16N)
KB mirror profile optimization - summary

Finite Element analysis in X-ray optical systems / L. Zhang

FEA deals with following issues:

- Mirror width profile
- Residual slope error
- Sensitivity to the uncertainty of preload spring parameters
- Si crystal orientation
- Stress in the mirror
- Resolution requirement for the Pico motors
- Stress in the bender and glue layers
- Error analysis
- Mirror performance at different photon energy
- ...

24-25 Feb 2009
Summary

FEA

- Widely used in X-ray optic Design, manufacturing and operation
- Providing data for
 - Ray-tracing
 - Dynamic diffraction simulation