NSLS-II Closed Orbit BPM Project

Om Singh Libera Users Meeting - June 22-23, 2009 ESRF, Grenoble, France

Om Singh NSLS-II Diagnostics Group Libera Users Meeting NATIONAL LABORATORY

Outline

- NSLS-II Project Overview
- Closed Orbit Correction Strategy
- Libera Brilliance Test Results with Beam
- Summary

Aerial View

U.S. DEPARTMENT OF ENERGY

3

BROOKHAVEN SCIENCE ASSOCIATES

NSLS-II Injector Complex Overview

SR Lattice & Electron Beam sizes/divergences

U.S. DEPARTMENT OF ENERGY

SR Diagnostics

Monitor	Qty	Comment	
RF BPM – TBT & Stored Beam	180	Itech – Brilliance	
ID RF BPM	2 or 3 per ID	Itech - Brilliance	
Photon BPMs (BM/ ID)	2 per BL	Workshop at NSLS-II	
DC Current Transformer	1	Test @ SPEAR3	
Tune Monitor	1		
Fill Pattern Monitor	1	WCM or Stripline	
Fluorescent Screen	1 (3 position)	Injection straight	
X-ray Radiation BL (BM/ 3PW)	2	Pin-hole simluations	
Visible Radiation BL (BM)	1		
Transverse Feedback Systems	1 H & 1 V	Inst. Tech; Dimtel Inc.	
Beam Loss Monitors	60		
Beam Scrapers (X & Y)	2 sets		
Bunch cleaner/bunch purity	1	Not in baseline	

SR Cell BPM/Corrector Layout

2) Small Aperture RF BPMs \rightarrow 2 or 3 per Cell; Button Assembly on a Stand or ID Chamber

4) a-Six slow correctors (SC)- 0.8 mrad;

b-Three fast correctors (FC)– 0.015 mrad

Close Orbit Correction Strategy

Include all available BPMs

Slow correctors for close orbit correction (alignment)

Fast correctors for fast orbit feedback

 Requires synchronous transfer at some interval of DC part from fast corrector to slow corrector - avoids saturation of fast corrector

RF BPM – R&D and Design

Key areas in RFBPM performance

- 1. RF Button Geometry
- 2. RF Button Mechanical Mounting Stability
- **3**. Vacuum Chamber Microwave Modes
- 4. RF BPM Electronics

RF BPM System Baseline Requirement

- 1. Diagnostics & position data (BPM Electronics)
 - Raw digitizer Data ~ 117 MHz
 - Turn by Turn ~ 400 kHz
 - Fast Orbit Feedback ~ 10 kHz
 - Slow Orbit ~ 10 Hz
 - Interlock data
- 2. Perform beam-based alignment
- **3**. Calculate machine parameters during beam studies
 - β function, betatron phase advance
 - Dispersion, chromaticities, coupling

(On line calculation during operational beam highly desirable, but not in baseline – requirement being evaluated)

RF BPM Hardware and Electronics

Fast Orbit Feedback

Need to Circulates > 240 BPM data to all 30 cells at 10 kHz rate

✓ Develop fast synchronous communication (FPGA based)

✓ Architecture - synchronous, deterministic, fault tolerance

✓ Provide BPM data to feedback / diagnostics processor

Collaboration -

L. Dolittle - LBL Y. Tian – BNL NSLSII J. Mead – BNL Instrumentation

Y

FOFB Data Communication

Brilliance Test at CESR Cornell (Multi-bunch)

- RF frequency = 499.68 MHz; Harmonic number = 1281 Minimum bunch separation = 14 ns
- Setup –
- -One button signal split to 4
- inserted attenuator for ~ 1mm Y offset

Bunch fill pattern	Total current, (mA)	Each bunch current (mA)	Χ, μ	Υ, μ
45	35.9	~0.8	37.8	1120.5
9×5	44.3	~1.0	37.9	1120.5
9	44.0	~5.0	37.9	1117.8

Conclusions

- Fill pattern dependence < 100 nm
- Intensity dependence < 3 micron with 5 fold change

Brilliance Test at CESR Cornell (Single bunch)

15

Brilliance Test at APS ANL – Intensity Dependence

With intensity changes from 9 a.u. to 3 a.u 1) DC Offset < 100 nm; 2) AC Noise 10nm \rightarrow 20nm (10 Hz BW)

Brilliance Test at APS ANL – Bunch Fill Dependence

With fill pattern change from 100% to ~ 80 % - DC Offset < 100 nm

Summary

- 1. Made good progress on RF BPM infrastructure
- 2. Closed orbit strategy is well defined for both alignment as well as fast correction
- **3**. RF BPM Electronics

► Libera Brilliance meets or exceeds NSLS-II baseline measurement resolution and stability requirement.

- Issues with Libera Brilliance currently under evaluation
 - Use of Virtex-2 FPGA technology not current
 - Limited FPGA capacity to add on future applications

Acknowledgment

R. Alforque, B. Bacha, A. Blednykh, P. Cameron, W. Cheng, L.B. Dalesio, A.J. Della Penna, L. Doom, R. P. Fliller, G. Ganetis, R. Heese, H-C Hseuh, E.D. Johnson, B.N. Kosciuk, S.L. Kramer, S. Krinsky, J. Mead, S. Ozaki, D. Padrazo, I. Pinayev, V. Ravindranath, J. Rose, T. Shaftan, S. Sharma, J. Skaritka, T. Tanabe, Y. Tian, F.J. Willeke, L-H Yu

Backup Slides

Fast Corrector Requirement vs Noise Sources

RF BPM System – Performance Requirements - I

Parameters/ Subsystems	Conditions	*Large Aperture RF BPM Resolution Requirement	
		Vertical	Horizontal
Single bunch, Single turn resolution	0.05 nC charge	500 µm rms	500 µm rms
(@ 378 kHz)	5.0 nC charge	20 µm rms	20 µm rms
Single bunch stored beam resolution	0.02 mA current	10 µm rms	10 µm rms
(0.017-200 Hz BW)	2.0 mA current	1 µm rms	1 µm rms

*Small aperture RF BPM requirements specified to be better by a factor of 2

22

RF BPM System – Performance Requirements - 2

Parameters/ Subsystems		Conditions	*Large Aperture RF BPM Resolution Requirement			
					Vertical	Horizontal
50 mA to	BPM	Assuming no		0.017 Hz to 200 Hz	0.2 µm rms	0.3 µm rms
500 mA	Receiver	contribution from	rom bunch/	200 Hz to 2000 Hz	0.4 µm rms	0.6 µm rms
StoredElectrobeam-resolution20% to100 %Mechadutyat Piccycle(grourcombi	Electronics	ini patterri enects		1 min to 8 hr drift	0.2 µm peak	0.5 µm peak
		Bunch charge effects only	e/ fill pattern	DC to 2000 Hz	0.2 µm rms	0.3 µm rms
	Mechanical	Mechanical motion limit		50 Hz to 2000 Hz	10 nm rms	10 nm rms
	at Pick-up electrodes assembly (ground & support		4 Hz to 50 Hz	25 nm rms	25 nm rms	
			0.5 Hz to 4 Hz	200 nm rms	200 nm rms	
	combined)		Thermal	1 min to 8 hr	200 nm peak	500 nm peak

*Small aperture RF BPM requirements specified to be better by a factor of 2

23

NSLS-II Injector - Overview

 LTB & BTS transport lines are in-house built Fast CT Integrating CT Fluorescent Screen/ OTR Energy Slit Beam Dumps 	
Integrating CT 2 Fluorescent Screen/ OTR 9 Energy Slit 1 Beam Dumps 1	
Fluorescent Screen/ OTR 9 Energy Slit 1 Beam Dumps 1	
Energy Slit1Beam Dumps1	
Beam Dumps 1	
Booster MonitorQtyRF BPM7	1
Fast CT1Beam Profile Monitor1	1
Fluorescent Screen/ OTR 6	
RF BPM 24	
Streak Camera 1	
Gun/ Linac Monitor Qt	У
LTB Monitor Qty Wall Current Monitor 5	
Fast CT2Fluorescent Screen/ OTR3	
Integrating CT 2 RF BPM 3	
Fluorescent Screen/ OTR 9	
Energy Slit 1	
Beam Dumps 2	
RF BPM 6	

Slow / Fast Corrector Power Supply Requirement

New configuration – FOF feedback consists of dedicated fast corrector system. This results in an economical power supply design for fast corrector.

Corrector type	Full Scale strength	DC Stability	AC Noise	DAC Resolution	Small Signal BW
Alignment	800 µrad	20nrad	1.6 nrad	3nrad	100 Hz
		25ppm	1.9ppm	3.8ppm	
Fast	15 µrad	1.5 nrad	<<1.6nrad	0.22nrad	>5 kHz
		100ppm	1.9ppm	15ppm	

G. Ganetis, L-H Yu

