

Applications of synchrotron X-ray imaging in bone research

Murielle Salomé

ESRF

Outline

1. Bone

- 2. Relevant X-ray Imaging techniques
- 3. Bone micro-structure
 - \Box 3D bone micro-architecture in (µCT)
 - □ 3D mineral bone density (quantitative μ CT)
 - \Box In vivo μCT
- 4. Bone mineralisation
 - □ Apatite maturation (µXANES)
 - □ Mineral crystallites, collagen fibers (µSAXS)

- 5. Biomechanics
 - \Box Bone under compressive stress (µCT)
- 6. Metals accumulation in bone
 - \Box Localisation of La in bone (µXRF)
- 7. Orthopedics and biomaterials
 - □ DEI imaging of bone implants
 - □ Scaffold osseo-integration (μ CT, μ XRD)
- 8. FTIR micro-spectroscopy
- 9. Perspectives

1. Bone

Bone

- Functions
 - Support and protection of the soft tissues and organs
 - Body movement
 - □ Mineral storage (Ca, P...) and homeostasis
 - Hematopoiesis

Cortical bone

- □ Hard outer layer of bone
- □ Closely packed osteons

Cancellous bone

- Less dense than cortical bone
- □ Honeycomb-like 3D structure
- Network of plate and bar shaped trabeculae

Cortical bone

ESRF

Trabecular bone

X-ray μCT image of human trabecular bone

M. Salomé et al., Medical Physics 26(10), 2194-2204, 1999.

Bone tissue – A composite nano-material

- Composite nano-material
 - □ Collagen fibrils reinforced with mineral platelets
 - Mechanical competences (stiffness and toughness)
- Organic matrix
 - □ Mainly type I collagen forming a triple helical structure arranged in fibrils (Ø100 nm)
 - Template for mineral phase
 - □ Some non-collagenous proteins
- Mineral phase
 - Poorly crystalline carbonated apatite
 - □ Many ion substitutions
 - □ 2-5 nm thick apatite crystallites
 - Crystals aligned along fibril axis
- Bone formation and remodeling
 - □ Bone continuously resorbed and replaced by new bone
 - □ Inhomogeneous bone mineralisation: bone regions with different mineral content depending on tissue age

2. Relevant X-ray Imaging techniques

SR X-ray imaging and bone research

Bone micro-structure

 Alteration with age, pathology (osteoporosis, osteoarthritis ...), ...
 Effects of therapy

High resolution imaging in 2D and 3D $(\mu m / nm)$

Spatially resolved information

Metals accumulation in bone

Pb, Al, Sr, La ...

Detection of trace elements with high sensitivity (ppm)

Bone mechanical properties

Bone micro- / nano-structure behavior under strain

Bone mineralisation

- Identification of mineral phases
- Apatite maturation
- Crystallinity

Alteration with age, pathology (rickets, osteogenesis imperfecta, osteopetrosis ...), ...

Chemical speciation Molecular information Crystallographic properties

Orthopedics and Biomaterials

- Micro-structure
- Bone integration

SR X-ray imaging and bone research

	Bone micro- structure	Bone mineralisation	Biomechanics	Metals in bone	Orthopedics Biomaterials
X-ray µtomography	Bone micro- architecture in 3D	Mineral density	Structure deformation		Micro-structure Bone integration
X-ray µfluorescence		Ca/P ratio		Localization of trace metals	Diffusion of metals from prosthesis
X-ray µspectroscopy		Apatite maturation		Chemical state	
Infra-red µspectroscopy		Bone mineral phases			Bone integration Material characterization
μSAXS / μXRD		Apatite crystallites	Deformation at the nano-scale		Bone integration
Diffraction Enhanced Imaging	Cartilage structure				Bone integration

In blue: examples developed hereafter

3. Bone micro-structure

Quantification of the 3D micro-architecture of trabecular bone using x-ray microtomography

- 3D Non-destructive imaging technique
- High spatial resolution, tunable from 10 μm to <1 μm
- Access to 3D histomorphometric parameters
 - □ Bone volume fraction (BV/TV)
 - □ Bone trabecular thickness (Tb.Th)
 - □ Trabecular spacing (Tb.Sp)
 - Connectivity parameters
 - Anisotropy
 - □ ...
- Quantitative reconstruction of linear attenuation coefficient in monochromatic beam
 3D Bone mineral density
- Dedicated sample environments for *In situ* studies
 - Bone structure deformation and cracks propagation under compressive stress
- In vivo studies

Evolution of bone trabecular structure with age

33 year old

55 year old

82 year old

^{1mm} 10 vertebral spongiosa samples from women with different ages.

- Decrease of trabecular bone volume with age
- Increase of mean trabecular spacing
- Decrease in connectivity
- No significant thinning of the trabeculae

M. Salomé *et al.*, *Medical Physics* 26(10), 2194-2204, 1999. F. Peyrin *et al.*, *Cellular and Molecular Biology* 46(6), 1089-1102, 2000.

M. Salomé, ESRF ID21 F. Peyrin, CREATIS INSA Lyon & ESRF ID19

1mm

Quantitative measurement of the degree of mineralization **ESRF** in bone

Human iliac crest biopsies

Monochromatic beam -> Reconstruction of linear attenuation coefficient µ

Quantification of 3D mineral content provided a suitable calibration

S. Nuzzo et al., Medical Physics 29(11),2672-2681, 2002.

S. Nuzzo, ESRF ID19 F. Peyrin, CREATIS INSA Lyon & ESRF ID19 S. Nuzzo et al., Journal of Bone Mineral Research 17(8), 1372-1382, 2002.

X-ray Imaging techniques at ESRF, 5-6 February 2007

Cortical bone

1.00

Quantitative µCT: Calibration procedure

Phantoms: homogeneous water solutions of various known K₂HPO₄ concentrations

2D slice extracted from the 3D tomographic image of the phantom

Comparison with micro-radiography : qualitative results

S. Nuzzo et al., Medical Physics 29(11),2672-2681, 2002.

Comparison with micro-radiography : quantitative results

Degree of mineralization of bone (DMB) distribution measured by the two techniques

Mean difference = 4.7 %

Slightly higher in trabecular

than in cortical bone

S. Nuzzo et al., Medical Physics 29(11),2672-2681, 2002.

X-ray Imaging techniques at ESRF, 5-6 February 2007

S. Nuzzo, ESRF ID19 F. Peyrin, CREATIS INSA Lyon & ESRF ID19

Repeated on 4 biopsies

Effects of a sequential Etidronate therapy in postmenopausal osteoporosis

- Iliac crest biopsies from 14 patients, before (baseline), after 1 year and after 2 years of treatment.
- Sequential 13 week therapy repeated 4 times :
 - □ Etidronate (Procter and Gamble) 400 mg/day for 2 weeks
 - □ Ca (Sandoz) 1g/day for 11 weeks
- Measurement of the 3D microarchitecture parameters and bone mineralization

~7mm

S. Nuzzo, F. Peyrin, CREATIS INSA Lyon & ESRF ID19 M.H. Lafage-Proust, INSERM E9901, Saint-Etienne

In vivo imaging of bone micro-architecture in mice

ID19 µCT setup

S. Bayat et al., Nuclear Instruments and Methods in Physics Research A 548,247-252, 2005.

S. Bayat, ESRF F. Peyrin, CREATIS INSA Lyon & ESRF ID19

X-ray Imaging techniques at ESRF, 5-6 February 2007

Projection

In vivo imaging of bone micro-architecture in mice

Transverse slice μ CT image in the femur of a B6 mouse

voxel size : 10.13 µm 5 mn scan time

2.3 Gy SNR : 8.3 (18.4dB)

11.2 (24.2dB)

7.5 Gy

24.3 (27.9dB)

14.5 Gy

S. Bayat *et al.*, *Nuclear Instruments and Methods in Physics Research A* 548,247-252, 2005.

X-ray Imaging techniques at ESRF, 5-6 February 2007

S. Bayat, ESRF F. Peyrin, CREATIS INSA Lyon & ESRF ID19

4. Bone mineralisation

Bone mineral and possible substitutions

 Apatites 	$Me_{10}(XO_4)_6Y_2$			
		ļ		
Stoichiometric hydroxyapatite	Ca ²⁺	PO 4 ³⁻	OH	
Main possible substitutions	Sr ²⁺ , Pb ²⁺ , Cd ²⁺ , Mn ²⁺ , Na ⁺ , La ³⁺ , Mg ²⁺ vacancy:	HPO4 ²⁻ , CO3 ²⁻ , SO4 ²⁻ , SiO4 ³⁻ 	F ⁻ , Cl ⁻ , Br ⁻ , CO ₃ ²⁻ , O ₂ ²⁻ vacancy:	

- Many forms of non-stoichiometric apatites
- Bone mineral: carbonated apatite $Ca_{8,3} \square_{1,7} (PO_4)_{4,3} (HPO_4, CO_3)_{1,7} (OH)_{0,3} \square_{1,7}$
- Adsorption and exchanges at the surface of the crystals
- Synthetic calcium phosphates are good models of bone mineral and offer similar physico-chemical properties.

Bone apatite maturation state using P and Ca K-edge $\mu\text{-}$ XANES

- Maturation of bone mineral and possible precursors of bone apatites are not well known yet.
- Better knowledge of bone mineralisation helpful for treatment of diseases like rickets, osteogenesis imperfecta or osteopetrosis.
- Local assessment of bone apatite maturation state using μ-XANES

Follow-up of the maturation of poorly crystalline apatites using XANES at Ca K-edge

C. Rey, CIRIMAT-ENSIACET, Toulouse

D. Eichert *et al., Spectrochimica Acta* B 60, 850-858, 2005. X-ray Imaging techniques at ESRF, 5-6 February 2007

sHA

PCA 16m

PCA 1m

PCA 3d

PCA 0

4120

Follow-up of the maturation of poorly crystalline apatites using XANES at Ca K-edge

D. Eichert et al., Spectrochimica Acta B 60, 850-858, 2005.

D. Eichert, M. Salomé, ESRF ID21 C. Rey, CIRIMAT-ENSIACET, Toulouse

Follow-up of the maturation of poorly crystalline apatites using XANES at Ca K-edge

Correlation between maturation and modification of the XANES spectra Technique sensitive to the modification of calcium and phosphorus environments

D. Eichert et al., Spectrochimica Acta B 60, 850-858, 2005.

D. Eichert, M. Salomé, ESRF ID21 C. Rey, CIRIMAT-ENSIACET, Toulouse

X-ray diffraction and bone

- X-ray diffraction
 - □ Crystal lattice in mineral crystallites
 - □ Identification of mineral phases
- Small Angle X-ray Scattering (SAXS) :
 - □ Orientation of the collagen fibers
 - □ Distribution of mineral crystallites
 - Shape
 - Thickness of the smallest crystallite dimension
 - Orientation, degree of alignment of the particles
- µ-SAXS mapping with micro-beams
 - □ 2D maps of bone crystallites properties

Please refer to: P. Fratzl *et al.*, *Connective Tissue Research* 34(4), 247-254, 1996. J.C. Hiller *et al.*, *Journal of Archaeological Science* 33, 560-572, 2006.

Micro-focus SAXS: 2D mapping of bone crystallites properties

Modern human bone, 200 µm thick section

Applications in archaeological bone studies

J.C. Hiller et al., Journal of Archaeological Science 33, 560-572, 2006.

J. Hiller, Cardiff University Experiment performed at ESRF ID18F

5. Biomechanics

In situ microtomography study of human bone under compressive stress

- Development of a micro-compression device compatible with µCT setup
- Analysis of microcracks origination, growth and propagation in 3D
- Study of bone biomechanical properties under dynamic strain

P. Bleuet *et al*, *Developments in X-Ray Tomography IV*. Edited by Bonse, Ulrich. Proceedings of the SPIE 5535, 129-136,2004.

P. Bleuet, ESRF ID22 J.P. Roux, G. Boivin, INSERM 403, Lyon

In situ μ CT study of human bone under compressive stress ESRF

3. 3D Reconstruction and segmentation

P. Bleuet *et al*, *Developments in X-Ray Tomography IV*. Edited by Bonse, Ulrich. Proceedings of the SPIE 5535, 129-136,2004.

P. Bleuet, ESRF ID22 J.P. Roux, G. Boivin, INSERM 403, Lyon

Micro-compression system for bone samples

- Compatibility with µCT setup
- High accuracy rotation controlled by precision bearings
- Fatigue testing within 0 to 1% strain -> Sinusoidal motion with 5-10 µm amplitude using a piezoelectric actuator
- Measurement of (F,D): 2 motion gauges
 + 1 force gauge

Sample cell Ex-vivo physiological conditions T=37°C H=100%

P. Bleuet, ESRF ID22 J.P. Roux, G. Boivin, INSERM 403, Lyon

In situ microtomography study of human bone under compressive stress

6. Metals accumulation in bone

Metals accumulation in bone

- Easy storage and exchange of metals in bone
- May induce mineralisation defects
- Effects often dose-dependent
- Metals issued from
 - □ Food
 - □ Therapy (La, Sr, …)
 - □ Environment contamination (Pb, Cr, …)
 - □ Release from metallic implants (Ti, Co, Fe, Cr, …)
- Assessment of trace metals accumulation sites and potential toxicity
- μ-fluorescence (μXRF) mapping
 - \Box High sensitivity (a few ppm)
 - \Box Chemical speciation in μ -XANES

μ -XRF mapping of La in bone of chronic renal failure rats

- Accumulation of phosphate in Chronic Renal Failure patients (CRF)
- To decrease serum phosphate level: use of phosphate binders
 - □ Aluminum hydroxide Al(OH3)
 - □ Calcium carbonate CaCO3
 - □ Side effects: Al mineralization defects, Ca extra-osseous calcification
- Alternative: Lanthanum carbonate
- Check possible effect on bone mineralization, possible accumulation in bone tissue, tissue localization is important

µ-XRF mapping of La in bone of chronic renal failure rats

Goldner stained adjacent slice (500x) Osteoid tissue: red, Mineralised bone: blue 10 μ m thick trabecular bone section. E=6.3 keV, 36 μ m x 32 μ m, 1 μ m step size, 5s/pixel

Chronic renal failure rat model (5/6 nephrectomy) loaded with daily oral doses of lanthanum carbonate (2g/kg/day) over a 12 week period.

G. Behets et al., Kidney International 67, 1830-1836, 2005.

G. Behets, S.C. Verbeckmoes, P. D'Haese, M. E. De Broe, Department of Nephrology, Antwerp University
 M. Salomé, ESRF ID21
 X-ray Imaging techniques at ESRF, 5-6 February 2007

Localisation of La in different types of renal osteodistrophy

Animal with normal bone histology Bulk La concentration 2.68 µg/g

Animal showing hyperparathyroid bone disease

Bulk La concentration 2.71 µg/g

Animal with a mineralization defect Bulk La concentration 2.81 µg/g

Conclusions:

La generally at the outer edge of mineralized bone both at active and quiescent sites

➢ No obvious relationship between osteoid amount or type of renal osteodistrophy

After a 2-4 weeks washout period: same localization of La, no more mineralization defect

Fluorescence images

Ca

Composite image

Goldner staining

G. Behets et al., Kidney International 67, 1830-1836, 2005.

7. Orthopedics and Biomaterials

Diffraction Enhanced Imaging (DEI) of bone

Diffraction Enhanced Imaging of joint cartilage

Human hip head

DEI, ESRF ID17 30keV, 50% rocking curve Identification of the quality of bone ingrowth into HA layer of implant

Histological section

DEI, ESRF ID17 50keV, 15% rocking curve

A. Wagner *et al.*, *Nuclear Instruments and Methods in Physics research A* 548, 47-53, 2005.

Titanium implant integration in sheep, 9 week post-surgery

A. Wagner *et al.*, *Physics in Medicine and Biology* 51(5), 1313-1324, 2006.

Kinetics of bone deposition into porous calcium phosphate scaffolds

Highly porous hydroxyapatite scaffolds seeded with bone marrow stromal cells, implanted in immunodeficient mice.

V.S. Komlev et al., Tissue Engineering 12(12),3449-3458, 2006.

V.S. Komley, Universita Politecnica delle Marche and CNISM, Ancona, Italy & Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Moscow, Russia F. Peyrin, CREATIS INSA Lyon & ESRF ID19

Soft tissues

Kinetics of bone deposition into porous calcium phosphate scaffolds

Histogram of absorption coefficient in the 3D μCT image

Scaffold before implantation

V.S. Komlev et al., Tissue Engineering 12(12),3449-3458, 2006.

V.S. Komlev, Universita Politecnica delle Marche and CNISM, Ancona, Italy & Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Moscow, Russia F. Peyrin, CREATIS INSA Lyon & ESRF ID19 X-ray Imaging techniques

Scaffold + newly formed bone after: \Box 8 weeks,

- 16 weeks,
- Δ 24 weeks implantation

Osseo-integration of silicon-stabilized tricalcium phosphat

- Silicon-stabilized tricalcium phosphate bioceramics (Millenium Biologix Corp., Canada) 67% Si-TCP, 33% HA/β-TCP, seeded with bone marrow stromal cells.
- Implanted in immuno-deficient mice for 8 or 24 weeks

Decrease of scaffold thickness, increase of bone thickness

 $\mu\text{-}CT$ images (ESRF ID19) of scaffold before and after 24 weeks implantation

M. Mastrogiacomo et al., Biomaterials 28(7), 1376-1384, 2007.

Osseo-integration of silicon-stabilized tricalcium phosphat

- Mapping of the variation of the scattered intensity of different phases:
 - □ HA in newly formed bone
 - □ HA in scaffold
 - TCP in scaffold

 $\mu\text{-diffraction}$ images (ESRF ID13) of scaffold after 8 weeks implantation in immuno-deficient mouse

M. Mastrogiacomo et al., Biomaterials 28(7), 1376-1384, 2007.

8. FTIR micro-spectroscopy

A brief reminder about FTIR spectroscopy

Fourier-Transform Infra-Red Spectroscopy of bone

- Physico-chemical characterization of bone apatite
- Nature of the mineral phases
- Determination of relative amount of mineral / matrix
- Mineral crystallinity and maturity
- Nature of substituents and sites in apatite structure
- Environment of the ions
- Matrix composition

Bone FTIR spectrum

D. Eichert, ESRF ID21

Main FTIR absorbance bands in bone

Bands	Wavenumbers	Information	
v1,v3 PO ₄ ³⁻ bands	900 – 1200 cm-1	Crystal maturity	
Amide I bands	1590 - 1720 cm-1	Organic phase	
v4 PO ₄ ³⁻ bands	500 – 650 cm-1	Crystallinity	
v2 CO ₃ ²⁻ bands	878 cm-1	Type A carbonate Substitution OH site	
	871 cm-1	Type B carbonate Substitution PO_4^{3} site	
	866 cm-1	Labile surface carbonate	

Please refer to:

C. Rey et al., Cells Mater. 5, 345-356, 1995.

H.M. Kim et al., Calcified Tissue International 59, 58-63, 1996.

A.L. Boskey et al., Calcified Tissue International 72, 533-536, 2003.

L. Miller et al., Biochimica et Biophysica Acta 1527, 11-19, 2001.

FTIR Micro-spectroscopy mapping of biomaterial integration

Visible light image

Bone

HA cement implanted in rat tibia for 3 weeks

D. Eichert et al., Proceedings 8th International Conference on X-ray Microscopy, IPAP Conf series 7, 210-212, 2006.

ID21 FTIR microscope Aperture: 10x10 µm; Step size: 3 µm, 128 scans

9. Perspectives

Future – Pushing further the spatial resolution ...

- Development of imaging techniques at nano-scale
 - Nano-tomography
- Development of nano-probes
 - Nano-fluorescence
 - Nano-spectroscopy
 - □ Nano-diffraction
- Development of dedicated sample environments for *in situ* experiments
 - Under stress/strain
- Multi-modal approach combining techniques