

## X-ray optics for imaging

School on X-ray Imaging Techniques at the ESRF

P. Cloetens ESRF, Grenoble, France cloetens@esrf.fr

February 5-6, 2007

Acknowledgements for slides: J. Susini, O. Hignette, U. Neuhaeusler, T. Weitkamp

# Outline

- Beam conditioning Monochromators
- Wavefront sensors Diffractive gratings
- High Resolution X-ray Imaging
- Setups: TXM SXM PXM
- X-ray lenses (diffractive refractive reflective) and examples

### **Beam Conditioning**

**Flat mirrors:** 

Harmonic suppression Limited quality for imaging

#### **Monochromators:**

Perfect crystals nearly always Silicon  $\Delta E/E \approx 1.4 \ 10^{-4}$ Multilayer coated mirrors high throughput monochromator  $\Delta E/E \approx 2 \ 10^{-2}$ e.g. high spatial resolution imaging on ID19 Filtered 'white' beam  $\Delta E/E \sim 1$ e.g. ultrafast tomography on ID15

## Monochromator choice

Many X-ray imaging modes can accept a bandwidth larger than  $10^{-4}$ double Si crystal ( $\Delta\lambda/\lambda \approx 1.4 \ 10^{-4}$ ) or multilayer ( $\Delta\lambda/\lambda \approx 2 \ 10^{-2}$ ) Double crystal monochromator Multilayer monochromator



Scan-time ! 2 hours



Scan-time ! 9 minutes

Sample: Al / Al-Si

Energy = 18 keVD = 0.6 mpixelsize =  $2 \mu \text{m}$ 

Gain > 100, but ...

### Monochromator choice: multilayers

#### **!! quality of the substrate !!**



the shape errors should be much smaller than the layer period (0.01-10 mm<sup>-1</sup>)

### Influence of multilayer period

d = 2.6 nm



d = 4 nm



d = 6 nm



W/B<sub>4</sub>C 100 periods

Ru/B<sub>4</sub>C 65 periods W/B<sub>4</sub>C 20 periods

GO substrates Distance D = 1.8 m X-ray Energy ! 20 keV

 $100 \, \mu m$ 

#### Wavefront Sensor

#### cf. Grating Based Phase Contrast Imaging



interference pattern

- phase grating as beam splitter
- absorption grating as transmission mask
- x-ray wavelength  $\lambda \sim 0.1$  nm, grating periods  $\sim 2-4 \ \mu m$

T. Weitkamp, F. Pfeiffer, Ch. David et al



Christian David, Laboratory for Micro- and Nanotechnology, PSI



Christian David, Laboratory for Micro- and Nanotechnology, PSI

#### Wavefront Sensor



interference pattern

- phase grating as beam splitter
- absorption grating as transmission mask
- x-ray wavelength  $\lambda \sim 0.1$  nm, grating periods  $\sim 2-4 \ \mu m$
- phase gradient

T. Weitkamp, F. Pfeiffer, Ch. David et al

#### Wavefront Sensor



interference pattern

- phase grating as beam splitter
- absorption grating as transmission mask
- x-ray wavelength  $\lambda \sim 0.1$  nm, grating periods  $\sim 2-4 \ \mu m$
- phase gradient

T. Weitkamp, F. Pfeiffer, Ch. David et al

### The resolution gap

#### X-ray micro-tomography



1 voxel = 280 nmO Rozenbaum Univ. d'Orléans/ISTO, P. Cloetens Tomography in STEM with 1 nm diameter electron probe.



Catalyst particles. Red are Pt particles on Alumina crystal. Fringes are Moire. **Resolution about 1nm.** HAAD. Like STXM. 100 keV. P.Midgely et al, 2002

# Spatial Resolution (1)

Rayleigh Criterion for resolving two adjacent objects



Point spread function - Transfer function  $R_{\text{Rayleigh}} = c \lambda / NA$ Noise-less world

**Rose Criterion**: influence of noise on spatial resolution Photon statistics and/or dose limit the obtainable resolution SNR > 5 for detection e.g. tomography (Flannery 87)  $N_{Phot}^{tot} \propto \left(\frac{D}{R}\right)^4 \frac{\exp(\mu D)}{[\mu D(\sigma/\mu)]^2}$ 

With sample diameter D constant: if  $R \downarrow then \ N_{Phot} \uparrow as \ (1/R)^4$  Pixel / Voxel size

Often stated as 'resolution' in tomography! Correct sampling requires:  $q_{max} < q_{Nyquist} = \frac{1}{2 pixelsize}$ 

## Spatial Resolution (2)

#### **Information Limit:**

Highest frequency containing (scrambled) phase information



#### **Detection Limit:**

smallest object that can be detected will depend on contrast and noise can be  $<< R_{\text{Rayleigh}}$  especially using phase contrast

#### **Precision:**

e.g. on the position of an object

Precision 
$$\propto \frac{R}{\sqrt{N_{\text{phot}}}}$$

## High Resolution X-ray Imaging

**Full-field microscope**: Structure Dose inefficient, fast Absorption + phase



Scanning microscope: Nano-analysis Slow Rich, trace elements Phase contrast



**Projection Microscopy**: Structure Dose efficient, fast Phase contrast



### X-ray 'lenses'

**X-ray Reflectors** 

#### **Diffractive lenses**





### Fresnel zone plates



#### Fresnel zone plates



Towards sliced ML in transmission (J Maser et al)

## Zernike Phase Contrast Microscopy at ID21



Full field microscope: FZP's 60 nm spatial resolution at 4 keV Zernike PhC with phase ring



**Absorption Contrast** 



Zernike Phase Contrast

Serpentine resistor from Sematech 225 nm Cu lines

U. Neuhaeusler, W. Ludwig, ID21; G. Schneider, D.Hambach

### Full-field Microscopy





Fresnel Zone Plate 50 nm outermost zone width 34 nm pixelsize @ 9 keV 58 mm focal distance

#### 200 nm gold beads on Al foil 9 keV, 100 μm defocus

W Ludwig, G Johnson, P Cloetens

## **Compound refractive lenses**



http://www.institut2b.physik.rwth-aachen.de/xray/applets/crlcalc.html



B. Lengeler, C. Schroer, M. Richwin, RWTH, Aachen, Germany

### **Compound refractive lenses**



extreme curvature: *R* = 1μm - 3μm *N* = 50 - 100

#### lens made of Si by e-beam lithography and deep trench reactive ion etching

C. Schroer et al, Applied Physics Letters, 82(9), 2003

# Bent graded multilayers in KB geometry

#### **Bent graded multilayer**



#### **Reflective Optics**



#### **KB-geometry**





## Bent graded multilayers in KB geometry

#### Advantages

- Multilayer Efficiency
  - reflectivity towards 1
- 'Achromatic'
- large bandwidth possible (6-7 %)
- scan energy easily
- Large NA
- Optics can be tuned to source geometry / actual wavefront

#### Drawbacks

Mirror quality! Not 'install and go': more for dedicated end-stations (Not in-line optics) Angular sensitivity (temperature drift ...)

### Ultimate limits in KB focusing

- Source size: 'long' beamline, secondary source, X-FEL
- Mirror quality: technological issue, finishing method (cf. Osaka)
- Multilayer: are volume diffraction effects a limitation?



## **KB** Focusing



O Hignette, P Cloetens, G Rostaing, P Bernard, C Morawe Rev. Sci. Instr. 76, 063709-1 (2005)

# Ultimate limits in KB focusing

#### Line focus measurement on ID19



Invar mirror bender: thermal stability compactness

Energy 24 keV Focal length 80 mm Incidence angle 5.5 mrd Vertical 25 µm FWHM source at 150 m

## Ultimate limits in KB focusing

**Line Focus** 

Line width: 45 nm



O. Hignette P. Cloetens Ch. Morawe W. Ludwig P. Bernard R. Mokso

Deconvolution nano-wire Line width: 41 nm



### Depth of focus



Depth of focus is only ~ 20  $\mu$ m for 40 nm focus @ 24 keV

## **Diffraction** limit



No volume diffraction effects visible at the 40 nm level

O. Hignette

### **Applications: Nano-Imaging Project**

Goal

build an *end-station* (ID22NI) dedicated to *3D imaging* with routine ~ 50 nm spatial resolution combine micro-structure and micro-analysis



3 years project, started 2005 Pilot project

## Nanochemical Imaging of Neurons

Role of iron in Parkinson's disease

Fe accumulates in

ultrastructures outside the nucleus

ID22NI

R Ortega, G Devès, A Carmona, CNAB, CNRS, Gradignan S Bohic, P Cloetens





Inside  $\phi = 1 \text{ mm sample} \rightarrow \text{local tomography!}$  E = 20.5 keVX-ray magnification ~ 80 (voxel size = 90 nm) R Mokso, P Cloetens, E Maire, W Ludwig, JY Buffière



# Conclusions

•X-ray optics increasingly used in imaging setups quality and availability remain limiting factors continuously improving

•X-ray lenses for sub-micron imaging be careful with simple numbers KB multilayer optics: high efficiency, large *E* bandwidth FZP's: low energies, objective lens in full-field microscopy CRL's: high energies, diffraction

Need for dedicated microscopes / end-stations

•Crucial for ESRF Upgrade Programme: nanofocusing, imaging, ...