Imaging and dynamics using scattered coherent X-rays

School on X-ray Imaging Techniques at the ESRF

Grenoble

February 5-6, 2007

Anders Madsen European Synchrotron Radiation Facility

Diffraction imaging of biomolecules with coherent femtosecond X-FEL pulses

Coulomb explosion of T4 lysozyme R. Neutze *et al.*, Nature **406**, 752 (2000)

Diffraction imaging of biomolecules with coherent femtosecond X-FEL pulses

Simulated coherent scattering image of a single T4 lysozyme molecule. R. Neutze *et al.*, Nature **406**, 752 (2000)

<u>Outline</u>

- Coherence
- Scattering with Coherent X-rays
- Coherent Diffraction Imaging (CDI, XDM)
- X-ray Photon Correlation Spectroscopy (XPCS)
- Outlook (X-ray laser sources)

Coherence ?

- Quantum mechanics \rightarrow probability amplitudes
- Optics \rightarrow interference
- X-ray and neutron scattering

It's all about probability amplitudes and interference !!!

Young's double slit experiment (Thomas Young, 1801)

$$\begin{split} P &= |\Sigma_j \Phi_j|^2 \\ \Phi: \text{ probability amplitude} \\ \Phi_j &\sim exp[-i(\omega t\text{-}kl_j)] \\ \omega &= ck, \ k = 2\pi/\lambda, \ l_j(L,y) \end{split}$$

I(y) → P(y) ~ cos²(π y/ Δ) Δ = λ L/d= λ /Θ Far field: Θ<< λ /d

Reasons for losses in visibility/interference/coherence

- 1) Incoherent superposition of probability amplitudes $P=\Sigma_j |\Phi_j|^2$ (distinguishable alternatives, uncertainty principle)
- 2) Intensity interference is only observed if event is repeated many times; repetition under non-ideal conditions washes out the visibility

Using a (partially) coherent X-ray source 2) is a major limitation

Non-ideal conditions:

- E_{in} , E_{out} , k_{in} , k_{out} not well defined in the experiment
- Disorder in the scattering sample
- Limited resolution (temporal and spatial)
- The source is chaotic.....

Light sources

 Chaotic sources (spontaneously emitted photons) Light bulb Laboratory X-ray generators Synchrotron and Neutron sources Radioactive nuclei

 One-mode sources (stimulated emission, Glauber light) Unimodal lasers

<u>Decisive parameter</u> : N_C=photons pr. coherence volume

 $N_{\rm C} \sim 10^7$ for typical optical laser

Coherence volume $V_c : \pi l_h l_v l_1/4$ horizontal, vertical and longitudinal (temporal) coherence length

Chaotic source (ESRF undulator)

(spontaneous, independent emission in all modes)

Longitudinal (or temporal) coherence

After time $t >> \tau_0$ the field amplitudes from a chaotic source are no longer correlated due to the wavelength spread

 $\tau_0 \sim 1/\Delta\nu = \lambda^2/(c\Delta\lambda)$

Longitudinal coherence length $l_1 = c\tau_0 \sim \lambda^2 / (\Delta \lambda)$ (~1µm)

Transverse (spatial) coherence

Analogy with Young's double slit experiment : Transverse coherence length (v,h) : $l_{v,h} \sim \lambda L/d_{v,h}$ (~5-200 µm)

Important source parameters

Brilliance B = photons/sec / [source area × solid angle × bandwidth]

Lateral coherence area $A_t = \pi l_h l_v / 4 = (\lambda L)^2 / (4\pi d_h d_v)$

 N_c =photons in $V_c (V_c = A_t \times l_l)$

Coherent solid angle $\Omega_C = A_t/L^2 = \lambda^2/(4\pi d_h d_v) = \lambda^2/16A_s$

$$N_c = B \times \tau_0 \times A_s \times \lambda^2 / 16A_s \times \Delta \nu / \nu = B \lambda^3 / (16\pi c)$$

Coherent intensity

 $\mathbf{I_c} = (\mathbf{N_c/V_c}) \times \mathbf{c} \times \mathbf{A_t} = \mathbf{B} \times (\lambda/4)^2 \times (\Delta\lambda/\lambda) \quad (\sim 10^{10} \, \text{ph/s})$

Coherent photons scale with λ^3 , intensity with λ^2 ! Coherent scattering is Brilliance-hungry !

Coherent X-rays from a partially coherent source

B=10²⁰ $\rightarrow \sim 10^{14}$ ph/s/mm² (monochromatic) Low divergence (~10 µrad) Small source size (~ 25µm)

ESRF beamlines using coherence in experiments:

ID01, ID10, ID17, ID19, ID20, ID21, ID22, and more...

Partially coherent light: Coherence lengths

Transverse coherence length (v,h) : $l_{v,h} \sim \lambda L/d_{v,h}$ (~5-200 µm) Longitudinal coherence length $l_1 = c\tau_0 \sim \lambda^2/\Delta\lambda$ (~1µm) Contrast $\beta \approx$ (coherence volume)/(scattering volume)

Different reigimes of coherent X-ray imaging/diffraction

ESRF

Image reconstruction in the different regimes

Absorption regime

Easy reconstruction based on attenuation 3D tomographic reconstruction, inverse Radon transformation

Phase contrast regime

Edge enhanced contrast Transport-of-intensity (TIE) equation Holotomographic reconstruction (Talbot effect)

In-line holographic regime

Holographic reconstuction Twin images

Diffraction imaging

Phase retrieval by iterative procedure (phase problem) Real space $\leftarrow \rightarrow$ reciprocal space, application of constraints Requires oversampled diffraction pattern

X-ray scattering

X-rays are scattered by electrons

Scattering lengths

Free electron: r_0 (Thomson radius r_0 =2.82e-5 Å)

Atom: $f(\mathbf{Q}, E) r_0$ (atomic form factor $f(\mathbf{Q}, E)$)

 $f(\mathbf{Q}, E) = f^{0}(\mathbf{Q}) + f'(E) + if''(E)$

 $f^0(\mathbf{Q}) \rightarrow Z$ for $\mathbf{Q} \rightarrow 0$

 $f^{0}(Q) = FT\{\rho(r)\}$

Connection with refraction: $n = 1-\delta+i\beta = f(\mathbf{Q}, E)\rho_a r_0 \lambda^2/2\pi$

More atoms: $F(Q) = \sum f_j(Q, E) \exp(iQ \cdot r_j)$

The phase problem

Phase matters

Iterative methods in diffraction imaging

Algorithms:

- Gerchberg & Saxton (1972)
- HIO (Fienup, Miao)
- Difference map (Elser)
- Shrinkwrap (Marchesini et al.)
- Curved wavefront approaches (Nugent)
- PIE, Faulkner & Rodenburg (2004)

Methodology:

Support, beam vs object (Stadler, Zuo)

Reference wave (Eisebitt, Nugent)

Beamstops (Chapman, Jacobsen, Zuo)

Detectors (Nishino, Chapman)

Radiation Damage (Jacobsen, Chapman) (electrons or X-rays, imaging or diffraction ?)

Correct sampling

Sampling at frequency $2\pi/a$ is **NOT ENOUGH** to resolve fringes

Minimum oversampling is 2 (regardless of dimension)

∆Q<2π/a * (1/2)	
ΔQ<2π/a * (1/2) ^{1/2}	
$\Delta Q < 2\pi/a * (1/2)^{1/3}$	

Pixel size X < λ L/2a (1D case)

Anders Madsen, School on imaging techniques at the ESRF, Grenoble Feb. 5-6, 2007

(1D case

(2D case

(3D case)

Iterative phase retrieval algorithm

J.R. Fienup, Appl. Opt. **21**, 2758 (1982) R. W. Gerchberg and W. O. Saxton, Optik **35**, 237 (1972)

Real space constraints

- Finite support (acf, shrink wrap)
- Real ρ (centro-symmetric I(Q)) ?
- positive ρ (sample thickness) ?

Reciprocal space constraints

$$|\mathrm{E}(q)| \rightarrow \sqrt{\mathrm{I}(q)}$$

R. Millane et al., J. Opt. Soc. Am. A14, 568 (1997)

Iterative phase retrieval algorithm

Coherent scattering from a yeast cell

Speckle pattern, $\lambda = 16.5$ Å (ALS)

No shrink warp, "hand drawn" support Averaging iterates (Elser & Thibault, Cornell) Difference map algorithm D. Shapiro *et al*, PNAS **102**, 15343 (2005) Resolution ~ 30nm

Tomographic reconstruction of core-shell structures

J. Miao *et al*, PRL **97**, 215503 (2006)

GaN (core) – Ga2O3 (shell) structure clearly visible

Diffraction imaging of small crystals

Diffraction imaging of small crystals

Rocking through the (111) reflection of a Pb nanocrystal

> Phase bulge indicates strain inside the nano-crystals arising from the contact forces at the interface

k_{in} Q **k**_{out} 40nm resolution

Ascients

 $Q = k_{in} - k_{out}$

M. A. Pfeifer et al, Nature 442, 63 (2006)

What about dynamics?

X-ray Photon Correlation Spectroscopy

Anders Madsen, School on imaging techniques at the ESRF, Grenoble Feb. 5-6, 2007

Intensity fluctuations from the ESRF storage ring

~850 m circumference, 6 GeV, 32 straight sections

Data taken with APD detector and 2GHz scaler board

XPCS experiment: nanoparticle dynamics in a glass

R=250nm, φ~1% **XPCS** data

Liquid at elevated temp. ($\eta \sim 0.1 \text{ Pa} \cdot \text{s} @ 290\text{K}$)

Results, **R=250nm**, **\phi~1%**

Higher concentrations....

Higher concentration \rightarrow deviations from Brownian motion

 $S(Q=Q_{max}) > 1 \rightarrow at Q=Q_{max}$ the dynamics is slower than simple Brownian motion ("de Gennes narrowing")

At higher concentrations inter-particle interactions start playing a role

Smaller particles \rightarrow different lengthscales probed \rightarrow dynamics is faster

R=16nm, ϕ ~20% ring-of-scattering at Q_{max}~ 0.2 nm⁻¹

Results, R=16nm, ϕ ~20%

"de Gennes narrowing" disappears for $T \rightarrow T_G$ (collective motion)

Conclusion:

Intermittent dynamics (n=1) driven by stress relaxations of the solvent become important much before T_G

Localized stress relaxations seem to lead to collective dynamics

http://www.esrf.fr/news/spotlight/spotlight39/spotlight39xpcs/

Time resolved reconstruction (merging Coherent Diffraction Imaging and XPCS)

H. Chapman et al, Nature Physics 2, 839 (2006)

Outlook

The future has already started

Pulsed X-ray lasers

- First 25 fs CDI experiment at the FLASH VUV laser
- LCLS (Stanford) & European XFEL coming online (~2009-2013)

Continuous coherent X-ray sources

• Energy recovery linac (Cornell, APS,??)

CDI/XPCS at **ESRF**

- XPCS activities continue, probably with more beamlines involved
- CDI is taking off (ID01, ID10 + more?)
- Scientific cases for CDI (SAXS/WAXS)
- Coherence is a "hot" topic in the forthcoming "purple book"

