X-ray Imaging Techniques at the ESRF: Applications in geosciences
One missing data – one available technique

- **Internal structure: tomography**
 - Rock permeability

- **Elemental distribution: fluorescence**
 - 2D – Solar nebula composition
 - 3D – fly-ash particles

- **Elemental speciation: energy-dependent signal**
 - S redox in microfossils
 - Fe^{3+}/Fe_{total} ratio

- **Gathering complementary data: Combined studies**
 - Fluid-fluid immiscibilities
3D internal structure

Tomography
Permeability and pressure solution creep

- **Aim:**
 - evaluate the influence of pressure solution (Dissolution – transport – precipitation) in permeability (connected porosity) changes upon compaction in geological settings

- **Scientific background:**
 - Pressure solution is an important ductile deformation mode in sedimentary rocks during diagenesis and in compaction of fault sealing in between earthquakes

- **Method:**
 - Evolution of the internal geometry in samples of aggregated grains
 - Observation of grain boundaries at selected steps during compaction

- **System:**
 - NaCl + saturated solution in monoaxial pressure cylinders
Tomography

Talk “Absorption imaging 2D + 3D”
given by Pierre Bleuet

- Set-up ID19
Permeability reduction

- Compaction (ε) corresponds to a decrease of the volume of halite+solution.
- It decreases by 18.2% (compaction = ε) in 82.8h
- Porosity (grey parts) decreases with compaction (ε)
- What about permeability?

Modes of permeability reduction

- **Grain indentation**
 - grains are displaced
 - Strengthening of the halite skeleton

- **Pore throat closure**
 - grains do not move
 - Disconnection of porosity

Permeability and pressure solution creep

- 3D data enables calculating the permeability tensor
Elemental distribution 2D

fluorescence mapping
Composition of preserved solar dust

- **Aim:**
 - Calculate concentrations in dust grains sampled from comet 81P/Wild2

- **Scientific background:**
 - Comets are representative of the solar nebula composition
 - Stardust brought back more matter from comets than did any previous mission
 - It gives the opportunity to better constrain the solar nebula composition by direct measurements
 - The amount of collected matter is however still small and trapped by aerogel in which dust particles break while being stopped

- **Method:**
 - Fluorescence mapping of grains trapped in aerogel and in their impact craters
Elemental distribution – fluorescence mapping

- Set-up ID22
Elemental distribution – fluorescence mapping

X-ray imaging techniques at the ESRF

Applications in geosciences
Elemental distribution – fluorescence mapping

Composition of preserved solar dust

- Results:
 - Composition are consistent with previously estimated values.
 - Composition of the initial solar nebula may be more enriched in moderately volatile minor elements such as Cu, Zn and Ga.
Elemental distribution 3D

fluorescence tomography
Environmental science: fly-ash particles

- **Aim:**
 - Investigate 3D imaging with a combination of absorption, Compton and fluorescence tomographies in fly ash particles

- **Scientific background:**
 - Fly ash produced by burning of biofuels or municipal waste has to be disposed.
 - Concentrations and distributions of potentially toxic elements have to be known before disposal to evaluate possible threat to the environment

- **Sample:**
 - Single fly-ash particle glued on the top of a quartz capillary

- **Method:**
 - Imaging the sample with helical scan and simultaneous recording of absorption, Compton and fluorescence signals
Fluorescence tomography: helical scan
Fluorescence tomography: helical scan
Fluorescence tomography: helical scan

helical = translation + rotation

high

low

Applications in geosciences
 Fluorescence tomography: helical scan

Sinograms:

Si Ge As Rb

low high
Fluorescence tomography: data processing

Volume reconstructed with a pile of 2D maps

Element found in liquid only

Element found in daughter mineral only

Element found in gas bubble only

Applications in geosciences
Results:

- Elements are not homogeneously distributed.
- Elements (Rb, red) protected by the Mn shield (brown) are less easily leached or made available to the environment.

Results:
- Elements are not homogeneously distributed.
- Elements (Rb, red) protected by the Mn shield (brown) are less easily leached or made available to the environment.
- Images are quantitative.

Elemental oxidation state

fluorescence mapping at selected energies
Early life – which traces?

- **Aim:**
 - Map S oxidation state in microfossils and living bacteria

- **Scientific background:**
 - No specific morphology enable discriminating biogenic from abiotic processes
 - Look for a specific biogeochemical signature
 - Is S oxidation state preserved in fossils?
 - Ultimate goal: define chemical signatures valid up to the early life (>3.5 Gyr)

- **Sample:**
 - living bacteria
 - analogues encapsulated in an Silica-rich matrix sampled on a deep ocean smoker

- **Method**
 - Fluorescence mapping of S at selected incident energies
Elemental oxidation state – fluorescence mapping at selected energies

- Set-up ID21
S⁰, S⁴⁺ and S⁶⁺ distributions

- **Results:**
 - S is spatial distributions are comparable in both samples → X-ray fluorescence mapping can help discriminating true fossils
 - S oxidation state is comparable in both samples → S could be an indicator of early biogenic activity

 - Is S oxidation state preserved in older fossils (>3.5 Gyr)

Elemental speciation

XANES mapping
Fe$^{3+}$/Fe$_{\text{total}}$ in pressure shadow fillings

- **Aim:**
 - Test a thermodynamic procedure to evaluate oxidation state of some elements in mineralogical assemblages

- **Scientific background:**
 - There is a need of evaluating temperature and pressure at which minerals formed
 - Thermodynamics can provide those information in a mineralogical assemblage provided phases are exactly known
 - Electron microprobe provides elemental concentrations but do not give any information about chemical structure
 - A method based on multiequilibrium thermodynamic calculations have been established to fill this gap but need to be tested by comparing its prediction with the comparable measured information

- **Samples:**
 - Chlorite, phengite and quartz assemblage from a metamorphic rock from Sambagawa (southwestern Japan)

- **Method**
 - XANES mapping at the Fe K edge
Elemental speciation – fluorescence mapping at selected energies

- Set-up ID24

Scanning the slits = energy scan

Absorption signal (a.u.)

Energy (eV)
Elemental speciation – XANES mapping

500µm

raw spectra

normalised spectra

X-ray imaging techniques at the ESRF

Applications in geosciences
Elemental speciation – XANES mapping

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)
Elemental speciation – XANES mapping

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)

X-ray imaging techniques at the ESRF

Applications in geosciences
Elemental speciation – XANES mapping

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)
Elemental speciation – XANES mapping

- Separation of chlorite, phengite and quartz
- Separation of chlorite (FeII) and chlorite (FeIII)

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)
Elemental speciation – XANES mapping

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)

X-ray imaging techniques at the ESRF

Applications in geosciences
Elemental speciation – XANES mapping

Results:
- Ab initio calculations on averaged spectra suggest that Fe(II) is in octahedral sites whereas Fe(III) is preferentially located in octahedral interfoliar layers

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)
Elemental speciation – XANES mapping

Optical image

Results:
- Ab initio calculations on averaged spectra suggest that Fe(II) is in octahedral sites whereas Fe(III) is preferentially located in octahedral interfoliar layers
- Measured data corresponds to prediction using the multiequilibrium calculations

Measured map of Fe$^{3+}$/Fe$_{total}$
(XANES)

Calculated map of Fe$^{3+}$/Fe$_{total}$
(thermodynamics)

Muñoz et al., Geochemistry Geophysics Geosystems, 7, Q11020 (2006)
Gathering several information

Combining techniques
Conclusions

- Choose the technique depending on:
 - Type of data:
 - Morphology: 2D or 3D absorption imaging and/or enhanced by phase contrast,…
 - Elemental distribution: fluorescence
 - Elemental speciation: fluorescence mapping at selected energy, XANES mapping
 - Beamtime available:
 - Absorption imaging: fast
 - 2D fluorescence or XANES mapping: slower
 - 3D fluorescence imaging: slowest
 - Spatial resolution:
 - Fluorescence mapping and absorption imaging: 1 µm and below
 - XANES mapping: 5 µm
 - number of samples required for representativity

- Benefit from complementary techniques (absorption, fluorescence, spectroscopy, diffraction):
 - 2D pencil beam imaging allows simultaneous analysis with various methods.
 - 2D imaging is appropriate to choose representative or interesting locations for complementary analysis

- Demand in-situ capabilities
 - Reproducing HT-HP conditions
 - Work under pressure (uniaxial, isotropic)
 - Accessing new elements with He/vacuum chambers
References

- Cauzid et al. Contrasting Cu-complexing behaviour in vapour and liquid fluid inclusions from the Yankee Lode tin deposit, Mole Granite, Australia. Chemical Geology, in revision
- Cauzid et al. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography. Spectrochimica Acta Part B, in revision