School on X-Ray Imaging Techniques ESRF, Grenoble, 5-6 February, 2007

Spectro-microscopies

Jean Susini

European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex , France

Imaging taking a picture

Spectro-microscopy

Spectroscopy spread the light Photometry measure how much light

Spectro-microscopies

1 - Microscopy: < Δx , Δy < 1 μ m

2 - Spectroscopy: ∆E

Infrared Absorption (FTIR) E E E

The interactions photons-matter provide several contrast mechanisms

Relevant interactions of X-ray photons with matter

X-ray Absorption

 ✓ An electron in the given shell
 (e.g. K) is ejected from the atom by an external primary excitation x-ray photon, creating a vacancy.

X-ray fluorescence photon

 ✓ Higher energy core electron fills empty electron level, and ejects an xray photon of fixed energy.

 \checkmark The excitation energy from the inner atom is transferred to one of the outer electrons causing it to be ejected from the atom.

"Auger" Electron

Synchrotron based micro-imaging techniques

X-ray fluorescence

- Composition
- Quantification
- ✓ Trace element mapping

Broad emission spectrum
 <u>> Wavelength/energy</u> tunability

- Low emittance
 - Brightness
 - > Coherence

Phase contrast X-ray imaging

- 2D/3D Morphology
- ✓ High resolution
- Density mapping

Infrared FTIR-spectroscopy

- Molecular groups & structure
- ✓ High S/N for spectroscopy
- ✓ Functional group mapping

X-ray spectroscopy

X-ray

Diffraction & scattering

Long range structure

✓ Crystal orientation mapping

✓ Stress/strain/texture mapping

•

- Short range structure
- Electronic structure
- ✓ Oxidation/speciation mapping

Synchrotron based micro-imaging techniques

X-ray fluorescence

- Composition
- Quantification
- ✓ Trace element mapping

Penetration

- Bulk info
- & Long working distance
 - Space for sample
- Long depth of field
 - 3D imaging

Phase contrast X-ray imaging

- 2D/3D Morphology
- ✓ High resolution
- Density mapping

Infrared FTIR-spectroscopy

- Molecular groups & structure
- ✓ High S/N for spectroscopy
- ✓ Functional group mapping

X-ray spectroscopy

X-ray

Diffraction & scattering

Long range structure

✓ Crystal orientation mapping

Stress/strain/texture mapping

•

- Short range structure
- Electronic structure
- ✓ Oxidation/speciation mapping

Synchrotron based hard X-ray microprobe

- Spatial resolution : 0.05-2µm
- Spectral resolution : ΔE/E ~ 10⁻² 10⁻⁴
- Averaged flux : 10⁹ 10¹³photons/s/µm²

X-ray Fluorescence: a brief reminder

✓ Element specific
 ✓ Co-localization
 ✓ Quantification

X-ray Fluorescence: a brief reminder

- Low scattering (background)
- Low detection limit
 XRF geometry on synchrotron beamline
 X-ray absorption spectroscopy

✓ Element specific
✓ Co-localization
✓ Quantification

X-ray Fluorescence: a brief reminder

Κ

X-ray Lines and Transitions

J. A. Bearden, *Rev. Mod. Phys.* **39**, 78 (1967)

Photon energies, in electron volts, of principal K-, and L- shell emission lines

Element	к а 1	к а 2	к β 1	l a l	L a 2	l β 1	l .\$ 2	L'n	м а 1
3 Li	54.3								
4 Be	108.5								
5 B	183.3								
6 C	277								
7 N	392.4								
8 O	524.9								
9 F	676.8								
10 Ne	848.6	848.6							
11 Na	1,040.98	1,040.98	1,071.1						
12 Mg	1,253.60	1,253.60	1,302.2						
13 Al	1,486.70	1,486.27	1,557.45						
14 Si	1,739.98	1,739.38	1,835.94						
15 P	2,013.7	2,012.7	2,139.1						
16 S	2,307.84	2,306.64	2,464.04						
17 Cl	2,622.39	2,620.78	2,815.6						
18 Ar	2,957.70	2,955.63	3,190.5						
19 K	3,313.8	3,311.1	3,589.6						
20 Ca	3,691.68	3,688.09	4,012.7	341.3	341.3	344.9			
21 Sc	4,090.6	4,086.1	4,460.5	395.4	395.4	399.6			

From http://xdb.lbl.gov/xdb.pdf

The fluorescence yield ω

✓ $\underline{\omega}$ is the probability that an x-ray photon will be emitted as a result of ionization of a specific shell. For a given series of X-ray lines (e.g., the K series), ω is numerically equal to the ratio of K photons escaping from the atom to the ratio of original K-shell ionizations.

✓ The fluorescence yield for K lines increases monotonically as a function of atomic number, and algebraic models accurately predict the empirical data.

 ✓ This factor means that the sensitivity of the xray method decreases for the lighter elements.
 The decrease, however, is partly compensated by the higher photo-absorption cross sections in light elements.

Phytoextraction in hyper accumulator plants

Arabidopsis Thaliana

Green and low cost strategy for soil cleaning

Requires knowledge on the mechanisms of metal accumulation

M.P. Isaure et al., Biochimie, 2006

XRF mapping in Trichomes of Arabidopsis Thaliana

 E_{ex} : 5.8 keV, probe size: 0.4x0.2µm², dwell time: 800 ms/pixel.

M.P. Isaure *et al.*, *Biochimie*, in press

Cs accumulation in Arabidopsis Thaliana

 E_{ex} : 5.8 keV, probe size: 0.4x0.2µm², dwell time: 800 ms/pixel.

M.P. Isaure et al., Biochimie, 2006

Fluorescence tomography (3D-µXRF)

Fluorescence tomography (3D-µXRF)

The reconstruction problem is far more difficult compared to transmission tomography

- self absorption corrections
- $\mu(E_a, x)$ is a priori unknown
- weak fluorescence signal for light elements

Fluorescence tomography (3D-µXRF)

Algorithmic solution:

Optimal estimation of attenuation maps by combination of transmission, fluorescence and Compton tomographies

• B. Golosio et al., J. Appl. Phys. 94(1), 145 (2003)

Geometrical solution:

Collimation of the detection angle to define a voxel: confocal geometry

• B. L. Vincze et al., Anal.Chem., 76(22) (2004)

B. Golosio et al., J. Appl. Phys. 94(1), 145 (2003)

X-ray fluorescence tomography

X-ray radiograph

Foraminifera

✓ Single-cell marine animals

✓ Fossilized calcium carbonate shells

✓ Proxies for past oceanic conditions (climate)

P. Bleuet et al., SPIE, 2006

Fluo-tomography: 3D volume rendering

Foraminifera (Globorotalia inflata)

Quantification on 2D slices

Transmission

50 50µm

0

0

Compton

0.008 0.522 0.009 CI Ca S g/cm⁻³ g/cm⁻³ g/cm⁻³ 0 0 0 0.001 0.009 Zn Cu g/cm⁻³ g/cm⁻³

0

X-ray Fluorescence Tomography – "confocal geometry"

L. Vincze et al., Anal.Chem., <u>76</u>(22) (2004)

3D-Confocal XRF for tomography

 ✓ Information on the geochemical environment and conditions in which the diamond was formed

✓ Chemistry at several 100km depth

3D-rendering based on measured Sr, Y and Zr-K_{α} distributions

L. Vincze *et al., Anal.Chem.,* <u>76</u>(22) (2004) F.E. Brenker *et al., EPSL,* <u>236</u>, (2005)

From 3D-confocal XRF to quantification (Vekemans et al. JAAS, 2004)

Quantification using NIST SRM 613

Element	Phase 1	Phase 2		
Ca	29.6 %	18.6 %		
Sr	431 ppm	48 ppm		
Υ	9 ppm	61 ppm		
Zr	35 ppm	233 ppm		
	>	X		
Sr-rich p	hase	Zr,Y rich p		

Lamite Ca₂SiO₄

Zr,Y rich phase Walstromite structured CaSiO₃

Sr, Th, Y/Zr composed image

unusual high Ca concentration

"existence of a Carich diamond reservoir at depth below 300 km"

X-ray Absorption Near Edge Structure (XANES)

- Local site symmetry
- Oxidation state
- Orbital occupancy

Chromium compounds

Chromium in cells

Micrograph

Potassium

Cr (total)

1(a.u.)

0

Cr(VI)

R. Ortega et al., Chem. Res. Toxicol., 5, (2005)

Micro-XANES at the Sulfur K-edge in Pinna Nobilis

Y. Dauphin et al., Comparative Biochemistry and Physiology, Part A 132, (2002)

Chemical mapping of Sulphur species in Pinna Nobilis

Y. Dauphin et al., *Journal of Marine Biology*, <u>142</u>, (2003) Y. Dauphin et al., *J. Structural Biology*, <u>132</u>, (2003) • probe: 0.20x0.30 mm²

• dwell time: 2 sec/pixel

Alternative strategy for fast and stable hard X-ray µ-XAS

- Two-crystal fixed exit scanning monochromator
 - + large energy range for EXAFS
 - + high flux (XRF)
 - + mature technology
 - source of non-statistical noises
 - (crystal motions, lack of beam stability, precision)
 - relatively slow (10s-1s)

Wavelength (energy) dispersive polychromator

- + fast (1s-1µs)
- + stable
- low flux
- limited energy range and less flexible
- fluorescence more difficult

ID24-ESRF: an energy dispersive spectrometer on undulator source

Redox and speciation mapping of metamorphic rocks

Sambagawa (Japan)

- ✓ P, T conditions of formation of rocks
- ✓ Thermodynamical models depend critically on oxidation state of Fe
- \checkmark Need for quantitative map of Fe redox at the µm level

S. Pascarelli et al., J. of Synchrotron Radiation, 2006

Redox and speciation mapping of metamorphic rocks

 \bullet

•

Edge position: Fe oxidation state

Absorbance at a defined energy: Fe speciation

- Pixel size: 4x4µm²
- 3000spectra (1.5hrs)

Blackening of Pompeian Cinnabar paintings

Red = cinnabar (HgS)

- M. Cotte, J. Susini, ESRF, Grenoble, France
- A. Moscato & C. Gratziu, Università di Pisa, Pisa, Italy
- A. Bertagnini, Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
- **M. Pagano,** Soprintendenza per i Beni Archeologici del Molise, Campobasso, Italy

Blackening of Pompeian Cinnabar paintings

Red = cinnabar (HgS)

• Excavation started in 1988 and was completed in 1992

Rapid blackening since 1990

"Villa Sora", in Torre del Greco near by Pompei

Blackening of Pompeian Cinnabar paintings

- Cinnabar $\rightarrow \beta$ -cinnabar?
- Role of the lime substrate (CaCO₃)?
- Superficial or deep alteration?
- Role of sulfur?
- Other elements (e.g. cera punica) ?

X-ray fluorescence and elemental mapping

Composition maps by X-ray Fluorescence

2mm

Semi-quantification?

Sulfur K-edge XANES

XANES Sulfur K-edge

Sulfides

Sulfates

Semi-quantification?

Semi-quantification: sulfur compounds

Semi-quantification: Chlorine compounds

$$[Sulfides] \propto \frac{I(2.471) - I(2.460)}{I(2.510) - I(2.460)}$$
$$[Sulfates] \propto \frac{I(2.482) - I(2.510)}{I(2.510)}$$

Chemical mapping: reduced vs oxidised Sulfur

max

Summary Attributes of multi-keV X-Ray spectro-microscopies

X-ray Fluorescence

- Micro-spectroscopy (XANES)
- Higher penetration
- Phase contrast
- Larger focal lengths (> 20mm)
- Larger depth of focus (> 100µm)

Multi-technique approach

- Micro-Fluorescence
- Micro-diffraction
- 3D imaging
- Spectroscopies

- Trace element detection & mapping
- Quantitative fluorescence analysis
- Chemical state specificity
- Microscopy on thick samples
- Lower radiation damage (?)
- Space for sample environment
- 3D imaging

In-situ experiments controlled sample environment A common scientific case : trace element analysis in heterogeneous systems

An IR active mode must involve a change in the dipole moment of the molecule
 = charge imbalance in the molecule

- Each functional group has an ensemble of motions (vibrational) specific of the molecular group (fingerprint)
- These motions (or vibrational frequencies) are detected under « resonant » excitation in the energy domain 0.495 eV-0.062eV or 2.5 to 20µm or 4000-500 cm⁻¹
- There are databanks of spectra, which allow a rapid search and identification.

Infrared spectroscopy: some figures...

 Vibration frequencies (and wave-numbers) are inversely proportional to atomic masses

- C-H stretch (3000 cm⁻¹)
- C-O stretch (1000-1300 cm⁻¹)
- C-Br stretch (600 cm⁻¹)

Vibration frequencies (and wave-numbers) are proportional to bond strength

- C-C stretch (1000 cm⁻¹)
- C=C stretch (1600 cm⁻¹)
- C≡C stretch (2200 cm⁻¹)

An example of spectrum (biological sample)

Synchrotron infrared radiation: Two modes of emission

Bending magnet emission:

@ 10 µm

Edge emission:

Synchrotron Infrared microscopy

Synchrotron source: brightness advantage

A confocal microscope

Two confocal Schwarzschild objectives:

- focus the light onto the sample
- collect the light and relay it to the detector.

Diffraction-limited resolution of $\lambda/2$ (λ : 2 \rightarrow 12µm)

G.L. Carr, Rev. of Scientific Instruments, 2001, 72, 1613

Synchrotron vs Globar

Synchrotron FTIR Microscopy

Various calcium sites in human hair shaft

C. Merigoux *et al., Biochimica & Biophysica Acta,* <u>1619</u>, 53, (2003)

Various calcium sites in human hair shaft

Two different « types » of lipids in cuticule and medulla

Protein distribution in cortex

Outlook

