Drug Discovery for Neglected Diseases in an Academic Setting

Ruth Brenk

Major tropical parasitic diseases

Disease	Population at risk (thousands)	Deaths in 2002 (thousands)
Malaria	> 2,100	1,272
Leishmaniasis	350	51
African trypanosomiasis	> 60	48
Chagas' disease	120	14
Schistosomiasis	600	15

Pink R, Hudson A, Mouriès MA, Bednig M, Nat Rev Drug Discov 2005

Issues with current treatments

- Many drugs were introduced in the colonial times => do not comply with current standards
- Severe adverse effects
- Resistance
- Cost
- Difficult to administer
- Not effective against all stages of the disease

Pink R, Hudson A, Mouriès MA, Bednig M, Nat Rev Drug Discov 2005

Melarsoprol (1946)

The need for new drugs

- > 1,300 new drugs introduced between 1975 and 1999
- Only 13 for tropical diseases
- An important problem is market forces:

U.S.A. healthcare budget: **\$4,180 per capita per year**

Sub-Saharan Africa: **\$13 per capita per year**

The solution does not lie solely with the commercial sector

The gaps in the pipeline

Pécoul B, PLoS Medicine 2004; Nwaka S, Ridely RG, Nat Rev Drug Discov 2003

Availability to patients

The gaps in the pipeline

Pécoul B, PLoS Medicine 2004; Nwaka S, Ridely RG, Nat Rev Drug Discov 2003

Drug Discovery at the University of Dundee

PRE-EXISTING EXPERTISE:

- Parasitology
- Bioinformatics
- Biochemistry
- Molecular Biology
- Structural Biology
- Synthetic Organic Chemistry

WHAT WAS MISSING? *Resources, space and Staff for:*

- Computational Chemistry
- Medicinal Chemistry
- Compound Screening
- ADME-Tox

Resources

(Total funding over 5 yrs for translational research: £16.1 m)

Our Drug Discovery Team @ Dundee

Alan Fairlamb

Mike Ferguson

Bill Hunter

Daan van Aalten

Julie Frearson ex-BioFocus plc

lan Gilbert Ex-Cardiff Univ.

Ruth Brenk ex-UCSF

Paul Wyatt ex-Astex Therapeutics

Our goal

To deliver at least ONE drug candidate for a neglected disease for entry into formal pre-clinical development by March 2011

African trypanosomiasis / Sleeping sickness

- Distribution: sub-Saharan Africa
- Causative agent: Trypanosoma
- Transmission: Tsetse fly
- Symptoms:

- Beginning: malaise, tiredness, joint pain, swollen tissue, fever, headache, …
- Late: neurological and endocrine disorders, mental deterioration, coma, death
- Treatment:
 - Pentamidine : not effective against late stage, resistance
 - Suramin: only iv, severe side effects
 - Melarsoprol: late stage, sever side effects (including death)

Traffic Light Priority System

Target	Target 1	Target 2	Target 3
Target validation		•	•
Assay feasibility		•	•
Druggability		•	•
Chemical tractability		•	•
Toxicity issues			•
Resistance potential	•		•
Structural information		•	

Target-tailored approach

- Random compound screening
- Screening of focused libraries
- Structure-based design

Kinase library

Brenk et al, ChemMedChem, in press

Kinase library

Pterin metabolism

- Pterins are import co-factors, e. g. for the synthesis of thymidylate which is necessary for DNA synthesis.
- Trypanosomes are auxotrophic for pterins such as biopterin and folate
- Take-up of oxidised pterins via specific transporters, subsequently reduction to active tetrahydro-form
- Dihydrofolate reductase (DHFR) reduces folic acid to tetrahydrofolic acid

But: DHFR inhibitors are not effective against trypanosomes

Pteridine Reductase 1 (PTR1)

- Short chain dehydrogenase
- Role not fully understood
- Broad-spectrum activity with pterins and folates

- Can act as by-pass for DHFR
- Up to now all attempts to obtain a PTR1 double knock out strain have failed -> might be essential on its own

Hunter et al, Nat Struct Biol 2001, J Mol Biol 2005, Mol Microbiol 2006

Hunter et al, Nat Struct Biol 2001, J Mol Biol 2005, Mol Microbiol 2006

Hunter et al, Nat Struct Biol 2001, J Mol Biol 2005, Mol Microbiol 2006

PTR1

- Derivatives of typical DHFR inhibitors inhibit PTR1, but
 - Low solubility
 - Large polar surface area

Summary

- Set up a functional drug discovery unit in an academic setting
- Virtual screening for PTR1 inhibitors resulted in two novel hit series
- Core fragment of hit series 2 can adopt three different binding modes
- Derivatives of series 2 are highly potent in the enzyme assay and selective over hDFR
- No activity against Tryps

Thank you!

Paul Wyatt Ian Gilbert Chido Mpamhanga, Agata Krasowski David Robinson, Lindsay Tulloch, Bill Hunter Emma Shanks, Julie Frearson

