

Current status and future prospects of structural biology in drug discovery

Michael Hennig

Biostructure in drug discovery

Key progress of past years: Structure information in early phase of project

Organisational set-up

- Early involvement of biostructure expertise in target assessment
- Start protein preparation as early as possible
- Dedicated protein labs for biostructural research
 - Priority setting that fits to structure group
 - Taylored protein for biostructure (use of tags, construct design, purity requirements,)
 - Close feedback loop and mutual understanding of protein and crystallization lab's (avoid scapegoat effect)

Protein production

- Start with several constructs in parallel in various expression systems
- "Crystal-tailored" protein
 - "Rational" crystal engineering
 - Directed evolution/DNA shuffling
 - Use of antibodies & other binding proteins

diffract to better than 1.5 Å, P4₁2₁2
we have always been successful, but how long do you try?

Crystallization

- Miniaturization to set-up many experiments with limited amount of protein (<100 nl), fluidic circuit systems
- Diverse set of buffers, precipitants, additivesan unlimited experimental space
- Automation of liquid handling and crystal inspection

Optimization & set-up of robust system for xx complex structures still "manual" work !!!!

X-ray methods

- No real bottleneck anymore thanks to Se-Met and a rich source of homologous structures in the pdb
- Workflow and data capturing to keep track with increasing number of experiments
- Synchrotron access (Roche/SLS PX II- 40 days/year) and constant improvement in throughput and data quality
 - Sample changer
 - Pilatus detector

Pilatus detector

Properties:

Energy range 4 – 30 keV Dynamic range higher than CCD No dark current No readout noise Excellent point spread function Short readout times: ms Suppression of fluorescent background Very good signal/noise ratio

....enables fine slicing and data collection in a few seconds

0.95Å resolution measured on the Pilatus detector last week

Roche

Structure based drug design at work

Example DPP-IV

DPP-IV: SPR and X-ray in ligand characterization "pick the winner"

Cyanopyrrolidines Literature Benzoquinolizines HTS

Pyrrolidinones HTS

Aminomethylpyrimidines HTS

Questions to support characterization and prioretisation of hit cluster:

- Reversibility of binding?
- Active site binding Specificity, stoichiometry of binding?
- Kinetic of association, recognition, kon
- Kinetic of dissociation, stability, koff
- Binding mode and potential of further optimization

SPR: A sensitive & information rich assay

Association phase:

Equilibrium (saturation) phase:

Dissociation phase

Kinetic of association, recognition, kon Binding affinity, stoichiometry

Reversibility, kinetic stability, koff

Clustering of ligand classes in kon/koff plot

Use of SPR and X-ray in ligand characterization – **pick the winner**

Structure to facilitate lead generation

Starting point: hit from HTS - Aminomethylpyrimidines

Optimization of activity & molecular properties

Use of SPR and X-ray in ligand characterization – **pick the winner**

 NH_2

-R3

R1

R

Literature

Ν

Benzoquinolizines HTS

R1

R2

Aminopyrimidines HTS

NH₂ NH₂

N

Very difficult synthesis, but....

Binding mode of screening hit in DPP-IV

IC ₅₀ [nM]	500
solubility [mg/L] (LYSA, pH 6.5)	>414
logD (pH 7.4)	0.8
P _e [10 ⁻⁶ cm s ⁻¹] (PAMPA)	2.5
Cl _{mic} [mL/min/mg protein] (rat; man)	4.7 ; 0.0
CYPs [µM] (2C9, 2D6, 3A4)	>50
OGTT* (Δ _{Glucose} , 40 min)	-16%
Phospholipidosis in silico (ΔΔG _{am} ; kJ mol ⁻¹)	-6.47
hERG inhibition (10 µM)	45 %

- n-butyl substituent not optimimal for S1 pocket
- drug-like profile but lack of affinity with target
- other weak points: hERG; amphiphilicity

Optimization of S1 pocket interaction

- large affinity gains (40- to 1800-fold) through small lipophilic substituents at optimal positions
- high sensitivity to polarity mismatch and steric repulsion

High affinity with diverse MDO profiles

MeO MeO NH ₂ (rac.)					
IC ₅₀ [nM]	500	4.6	19	9.3	
logD (pH 7.4)	0.8	1.3	0.3	-0.2	
P _e (PAMPA) [10 ⁻⁶ cm⋅s ⁻¹]	2.5	3.4	2.4	0.2	
Cl _{mic} (rat; man)	4.7; 0.0	1.3; 3.0	14.4; 0.0	8.0; 0.0	
OGTT [Δ _{Glucose} , 40 min]	-16%	-41%	-62 %	-42%	
PL in silico [ΔΔG _{am} ; kJ mol ⁻¹]	-6.47	-6.41	-6.02	-5.56	
hERG inh. (10 µM)	45%	25 %	29%	9%	
CI [ml/min/kg]	57	87	118	25	
Vss [L/kg]	43	42	11.7	7.9	
S F [%]	38	56	50	94	
t _{1/2} [h]	10.4	6.9	1.4	4.9	
brain/plasma	n.d.	5.8	0.7	0.25	

- favourable MDO properties of screening hit are preserved
- improved in-vivo activity
- least amphiphilic lactam BZQ has minimal hERG inhibition and brain penetration

Fragment screening by biophysical methods

Roche

High Throughput Screening	Focused Screening
	Fragment based focused Screening
Public Information	• Screening of X000 compounds, selected to have Mw < 300 etc. (rule of 3).
	 Low affinity of interaction requires sensitive assay and chemistry efforts to become a "hit/lead"

Evolution of fragment screening at Roche Basel

"Early activities", sparse fragment library (300 compounds), NMR and X-ray inhouse data collection

- 1997 Gyrase
 - Boehm et al., J.Med. Chem., 43, 2864 (2000)
- 2000 CyclophilinD
 - Schlatter et al. Acta Cryst. D61, 513 (2005)

About 2003 - Switch from NMR to Biacore to filter hits, synchrotron radiation

2003 BACE

- Kuglstatter et al., J. Med Chem. submitted

2004 - New fragment library (2200 compounds)

Roche fragment screening – Process today

BACE 1 fragment screening hit: Tyramine in S1 pocket

Initial chemistry exploration of the fragment hit

Roche

Initial chemistry exploration of the fragment hit

Ν

8, K_{D} = 0.04 μ M, LE= 0.16

LE = Ligand efficiency in kcal mol-1 per non-H atom

Fragment Screening: What is it good for?

- 1. Learn more about your target BACE-1
 - S1 pocket shows best drugability
 - Structures indicate flexibility of active site conformation
 - Water mediated Asp-binding feasible
 - Explore chemical space of binding sites

Overlay of fragments in S1 pocket

Fragment Screening: What is it good for?

1. Learn more about your target – BACE-1

- S1 pocket shows best drugability
- Structures indicate flexibility of active site conformation
- Water mediated Asp-binding feasible

2. Explore new chemical space by

- Replacement of parts of known ligands
- Fragment growth
- Fragment linkage to larger molecules

Fragment Screening: Challenges

Target feasibility

- Protein suitable for biophysical methods (globular proteins, low/no feasibility of membrane proteins)
- "Suitable" protein in mg amounts

Technology prerequisites

- Robust crystallization system (ligand free, soaking or cocrystallization)
- Sensitive, robust assay instruments, access to synchrotron, workflow for HT crystallography and tight interaction with other methods

Mind-set

• low affinity compounds as starting points for chemistry

Structural biology today

Trends and challenges

- Key is early support in projects protein production, multiple starting points (constructs, expression systems....)
- More and more structures, but increased complexity for data analysis (Proasis)
- Complement X-ray with other methods like SPR, AUC, NMR... & for biol. Systems electron microscopy, SAXS,
- Off-target structure based drug (anti)design P450 enzymes, hERG
- Still several key drug targets without structural information
 - Multi protein complexes (when domain extraction fails)
 - Complexes of functional protein complexes (to address protein/protein interaction)
 - Membrane proteins

>> 50% drug targets are membrane proteins

Na, Cl, etc.

Neurotransmitter transporter Cation transporter (Mg, Zn,..) Etc.

Lower

Feasibility

Higher

> 50% drug targets are membrane proteins

Koch

- Structures of membrane bound enzymes are challenging, but possible

Roche Basel structures:

OSC, Thoma et al., Nature 432 (2004), MAOB, unpublished (2003), CPT, Rufer et al. Structure 14 (2006)

GPCR's are not in line with industry requirements for project support, but there is progress

First GPCR structure with protein expressed in Sf9 cells!

doi:10.1038/nature06325

nature

ARTICLES

Crystal structure of the human β_2 adrenergic G-protein-coupled receptor

Søren G. F. Rasmussen^{1*}, Hee-Jung Choi^{1,2*}, Daniel M. Rosenbaum^{1*}, Tong Sun Kobilka¹, Foon Sun Thian¹, Patricia C. Edwards³, Manfred Burghammer⁴, Venkata R. P. Ratnala¹, Ruslan Sanishvili⁵, Robert F. Fischetti⁵, Gebhard F. X. Schertler³, William I. Weis^{1,2} & Brian K. Kobilka¹

Acknowledgements

X-ray **Armin Ruf Dave Banner** Markus Rudolph Guillaume Schoch Jörg Benz **Martine Stihle Catherine Josef Protein Science Ralf Thoma Bernhard Gsell Brigitte D'Arcy Dominique Burger Daniel Schlatter** Martin Weber AUC/Biacore Walter Huber

1 Y132 F169 F170 H171 S96 G95 D289 G291 S2 G74 G72 G72 G72 G72

BACE

.

Andreas Kuglstatter Martin Stahl Jens-Uwe Peters Manfred Brockhaus Fiona Grüninger

DPP-IV Michael Hennig Bernd Kuhn Markus Boehringer Bernd Löffler Jens-Uwe Peters Thomas Lübbers Patricio Mattei Robert Narquizian Luca Gobbi Pierre Wyss

Synchrotron staff at PSI-SLS

Josiane Kohler

Andrea Wiget

Eric Kusznir

Francis Müller

..... many more colleagues at Roche Basel Discovery!

.

We Innovate Healthcare