X-ray spectroscopy and diffraction experiments by using mini-coils:

applications to valence state transitions and frustrated magnets

H. Nojiri, IMR Tohoku Univ., Sendai Japan

http:spin100.imr.tohoku.ac.jp

Contents

- 1. Introduction High Magnetic Fields
- 2. Mini coil
- 3. Diffraction experiments
- 4. XAS and others
- 5. Neutron Scattering
- 6. Summary

High Magnetic Field

Couple to spin and orbital moment of electron, which control properties of condensed matters

		Strong	Precise	Non-Contact	Time control	soft
	н	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Е		\checkmark	\checkmark	\checkmark	
	Р	\checkmark				
	Т					

300 Basis of the research of materials (a) 250 Sm_{1/2}Ca_{1/2}MnO₃ 200 long-pulse Magnetism CMR **2**₁₅₀ short-pulse Superconductivity High-Tc 100 - charge Semiconductor Quantum Hall effect ordering 50 Chemistry Molecular magnet Biology Protein(NMR) 20 40 60 $\mu_0 \mathbf{H}$ (T)

High Magnetic Field Generator

Easy installation

to the quantum beam facilities

High applicability

to various kinds of measurements (several Beamlines, Spectrometers)

Increase opportunities

to discover interesting field-induced phenomena

Development of Miniature Pulsed Magnet technique

Miniature Magnet and Portable Capacitor Bank

Small Energy

Small Space

High Magnetic Field

Mini coil+Portable Capacitor Bank

<Magnet> ID 3 mm Split $\Delta 2\theta = 60$ deg. $\Delta \chi = 9$ deg. Maximum field 33 T Pulse width 1 ms Repetition 15 minutes

<Bank> 5.6 kJ (2000 V, 2800 µF) 350 kG 2.4 kJ (2000 V, 1200 µF) 100 kG

Solenoid Coil for XAS

Out look of experimental port

agnet

3 mm

High Magnetic Field XAS Experiments

SPring-8 BL22XU

- Low Temperature T>2K
 He flow cryostat
 (Orange Cryo.)
- Transmission
 measurement
 Powdered sample is
 brushed onto Scotch
 tape

Detection
 PIN photo diode

 Time domain measurements Recorded by Digital Storage Oscilloscope

X-ray diffraction in $Pr_{1-x}Ca_{x}MnO_{3}$

x = 0.4

10

8

h

Magnetic Field [T]

Metal-insulator transition associated with structural phase transition

Valence Fluctuation

Found in some rare-earth intermetallic compounds

for example,

J. M. Lawrence et al., Rep. Prog. Phys. 44 (1981) 1.

Ce	3	5/2	$4f(5d, 6s)^3$
	4	0	$(5d, 6s)^4$
Sm	3	5/2	$4f^{5}(5d, 6s)^{3}$
	2	0	$4f^{6}(5d, 6s)^{2}$
Eu	2	7/2	$4f^{7}(5d,6s)^{2}$
	3	0	$4f^{6}(5d, 6s)^{3}$
Tm	(3)	6	$4f^{12}(5d, 6s)^3$
	2	7/2	$4f^{13}(5d, 6s)^2$
Yb	2	0	$4f^{14}(5d, 6s)^2$
	3	7/2	$4f^{13}(5d, 6s)^3$

- strong c-f hybridization
- intermediate valence
- itinerant f-electron
- Fermi liquid state
- non-magnetic state
- sensitive to (*T*, *P*, *B*)

Field Induced Valence Transition

Synchrotron X-ray Absorption Spectroscopy (XAS)

Electronic Structure

Inner shell transition e.g, L₃ transition : 2p_{3/2}⇒ 3d (4d, 5d) Element selective

Direct determination of valence change

High magnetic field electronic state of YbB₁₂

Future R&D

Detection- Time and Space resolved

Low noise

Multi-wave length

Field Longer duration

Fast cooling-nitrogen cooling

Repetitive

Short Pulse(Dynamics)

Method MCD, Resonant, Soft X-ray, Time-resolved

Mini Coil for Neutron

The Highest Magnetic Field for ND Repating :25T @ KEK

(Motokawa et al. 1989)

ND over 20T is still Difficult.

Reactor Facility

High Beam Flux

Beam Focusing is easier.

Development of Easier and more Diffusive Techniques

Target : H=40T Goal: Observation of Magnetic Transitions by ~100 Shots Experiments

Development to J-PARC

Double Magnet System

L₁~0.1mH, L₂~1mH C=0.96mF (Short Pulse) C=2.8 mF (Long Pulse)

Longer Pulse Low loss Effective injection Current limit Design Freedom

Experimental The Triple Axis Spectrometer, AKANE of Tohoku Univ. @ JRR-3M, JAEA, Japan

The coil & Sample were cooled in a liquid-He cryostat.

Observation of Spin-Flop at 10T

Test for 30 T 30 CuFeO₂ [1/4, 1/4, 3/2] B31 $(a)\delta = 0^{\circ}(B//c)$ 25 M[µ_B/Fe^{³+}] dM/dB[a.u.] 1.5 В 20 1.0 0.5 15 $\stackrel{(15)}{\oplus}_{10}^{15}$ B₂→ (b) δ ≈ 25° B B M[μ₈/Fe³⁺] dM/dB[a.u.] 5 0 Intensity[a.u.] -5 (c) -5 5 0 $\begin{pmatrix} 1 & 1 & 3 \\ 4 & 4 & 2 \end{pmatrix}$ 15 0 ¹⁰ 15 B[T] ō 20 60 25 10 50 CuFeO₂ [1/4, 1/4, 3/2] 4 8 40 Detector Signal 30 6 4

-4

20

0.35cc Single

B(T)

2

0

-2 ∟ -5

0

5

10

time(ms)

15

Problems to be solved

Practical Experiments

Summary

Miniature magnets are useful for the quantum beam experiments.

Structural study (X-ray Diffraction) Electronic States (X-ray Absorption) Magnetic Structure (Neutron Diffraction)

apply to various kinds of interesting materials

Combination of Pulsed field and X-ray, neutron opens a new horizon in condensed matter