

Pulsed magnetic fields at the ESRF

First results

<u>F. Duc</u>, P. Frings, J. Vanacken, C. Detlefs, J.E. Lorenzo, M. Nardone, J. Billette, A. Zitouni, W. Bras, and G.L.J.A. Rikken

Laboratoire National des Champs Magnétiques Pulsés, Toulouse, France Pulsveldengroep, INPAC, Leuven, Belgium ESRF, Grenoble, France Laboratoire de Cristallographie, Grenoble, France DUBBLE CRG @ ESRF, Grenoble, France

- Motivations
- Experimental set-up Pulsed field & cryogenics (LNCMP) ESRF beamline and detector
- Integration of both techniques
- First results on TbVO₄
- Future developments and applications

- Magnetic field is a thermodynamic variable of fundamental importance It is one of the important external parameters, such as *T*, *P* and *E*, which control phase transitions.
- Studies in high magnetic fields of systems with quantum correlations effects are of fundamental interest
 - to lift the degeneracy of degenerate quantum states (Zeeman effect)
 - to select quantum states
 - to break up of strong correlations between electrons (magnetism, superconductivity)
- All of the current high field measuring techniques are macroscopic (M, $\chi,$ r, $V_{H},$ $C_{v},$ $v_{s},\ldots)...$

...Until recently, there was no direct information on the structural properties above 15 T. Whereas we know (from low field measurements) that often field-induced phase transition do have a structural component.

- Sound velocity v_s and dilatometry at high fields also indicate structural effects.

Combination of X-ray techniques with High Magnetic Fields

The Pulsed Field generator

Mobility of pulsed fields equipment

The Pulsed Field generator

Generator (LNCMP capacitor bank)

- •Three subunits:
- 2 storage units contain: capacitors, crowbar diodes and resistors, and current limiters.
- Control unit houses: charger, thyristor stack, dump resistors and relays, I-V monitors.
- •130 kJ. 16 kV
- •The combined weight of the generator is 2800kg and dimensions are $1.25 \times 1.3 \times 2.85 \text{ m}^3$.

capacitor bank (16 kV)

EDF ground

- Max energy: 130 kJ
- V_{max} = 16 kV
- C= 1mF (12 x 0.083 mF)
- $R_{crowbar} = 225 \text{ m}\Omega$
- $L_{prot} = 0.25 \text{ mH} (17.5 \text{ m}\Omega)$
- I_{short} = 48 kA (0.8ms)
- Optically triggered thyristor switch
- $R_{dump1} = 1 \ k\Omega$
- $R_{dump2} = 1 k\Omega$

High field magnet (LNCMP)

- coil is wound of Glidcop wire
- bore of 20 mm Ø, external Ø = 124 mm, height = 74 mm
- L(T=77K)= 8.63 mH, R(T=77K)= 80 mΩ
- · coil is horizontally mounted
- Beam axis was along the bore of the magnet (Faraday geometry)
- magnet immersed in liquid nitrogen

Cryogenics

Sample cryostat (LNCMP)

- He flow system
- ~7 K to 300 K
- PID heater control
- T-sensors (2)
- dB/dt sensor (Field)
- Fits inside magnet
- allows bundle to pass
- sample top-loading !

Pulsed field & Cryogenics

Integration of Synchrotron and Pulsed Fields

⇒ Restriction of the available Q-space to 2.4 Å⁻¹

The pulsed magnetic field

Magnetic field up to 30 T (110 kJ. 16 kV)

ESRF beamline and detector

DUBBLE CRG-Beamline (BM26B, ESRF)

- Photons emitted from the 0.8T bending magnet
- Monochromatized by a Si(111) double crystal monochromator tuned to 21 keV (λ = 0.59 Å)

ESRF detector

- on-line image plate (MAR345)
- resolution of the plate : 100 $\mu\text{m/pixels}$
- detector area: 345 mm x 345 mm
- Not time resolved !

Full experimental set-up

- The magnetic field pulse and the X-ray shutters are synchronized by a common trigger
- Open/close beam after predefined delays
- Average magnetic field during the exposure is within 90% of its maximum value
- Time frames = 4.9ms
- Accumulation of series of pulses in order to obtain enough diffraction counts in the detector

TbVO₄ (REXO₄)

- T_{JT} = 33.1 K Cooperative Jahn-Teller transition : Ordering of the quadrupolar moments of the RE ions
- *T* > 33.1 K

Tetragonal zircon structure I4₁/amd (D¹⁹_{4h})

a = 7.1841(3) Å c = 6.3310(4) Å Site symmetry of Tb³⁺, 4f⁸ : (D_{2d})

• *T* < 33.1K

Crystal deformation along the [110] direction (B_{2g} strain) Orthorhombic structure Fddd (D_{2b}^{24})

a = 10.239(2) Å b = 10.029(2) Å c = 6.315(1) Å

The Jahn-Teller compound TbVO₄

Effect of a strong magnetic field B // [001]

• Prediction of the destruction of the quadrupolar ordering

Suppression of the Jahn-Teller state of $TbVO_4$ by a field of 29 T

Inducing symmetry change from orthorhombic to tetragonal

Flux-grown single crystals of TbVO₄ (P.C. Canfield, Ames Lab.), ground into a fine powder

Random distribution of grain orientations

Embedded in a polymer matrix (polyvinylpyrrolidone)

- Reduce movement of the powder grains
- Improve thermal contact

Thickness of the pellets adjusted to limit X-ray absorption (pellets of 4 mm Ø)

Pulsed field diagrams

Data normalized to one shot, i.e. 5ms

Synchrotron Applications of High Magnetic Fields Grenoble, France – November 16-17, 2006

202 022

12.8

12,4

20 (°)

131

12.0

12

11

311

• Control of change in distribution by **zero field measurement** before and after applying series of B = 30 T magnetic field shots:

Temperature dependence of diffraction patterns

CENTRE NATIONAL DE LA RECHERCHE

SCIENTIFIQUE

Orthorhombic distortion

Field induced structural changes

- **B** = 0T, **T** = 7.5 K → Orthorhombic (311) + (131) (202) + (022)
- $B \neq 0T, T = 7.5 \text{ K}$

Preferential population of domains In-plane magneto-crystalline anisotropy Splitting decreases with increasing **B**

→ *B* decreases the ortho. distortion

- **B** = 0T, **T** = 39K → Tetragonal (211) (112)
- B ≠ 0T, T = 39K
 Splitting appears with B
 Preferential domain population
 - → *B* induces the ortho. distortion

Field induced structural changes

Orthorhombic distortion as a function of applied field

Quantitative analysis of the data

- Theory:
 B // [001] suppress the distortion
 B // [110] enhance the effect
- TbVO₄: sample with large magneto-crystalline anisotropy
 The *H*-*T* phase diagram depends on: the magnitude of *B* the gright of *B* relative to the symmetry area
 - the orientation of **B** relative to the symmetry axes

- X-ray powder diffraction:
 - Direct measure of the Jahn-Teller distortion (lattice parameters, symmetry changes) Random distribution of the powder grains with respect to the external field
 - \rightarrow in some grains the JT-effect is enhanced
 - \rightarrow in others it is suppressed

This had to be taken into account in the data analysis

Final goal of the project

Provide the highest magnetic fields possible within the constraints imposed by the synchrotron x-ray beamline

Technological developments

- Higher fields, up to 40 T
- New design of the magnet coil
 - 1) Increase the opening angle of the coil in the Faraday geometry (B // beam)
 - 2) Split pair coil ($B \perp$ beam): wider optical access angles
- · Lower temperatures with better temperature control
- Automation of the operation mode
- Longer field pulses to facilitate the synchronization with shutters and detection electronics
- Fast x-ray detector (frame rate of 1 kHz or better)

New magnet coil

- coil is wound of CuNbTi wire
- bore of 20 mm Ø, external Ø = 130 mm, height = 80 mm
- R(T=77K) = 60 mΩ
- Opening angle of the coil: 40°
- coil is horizontally mounted
- **B** // beam (Faraday geometry)
- magnet immersed in liquid nitrogen

New N₂ cryostat

- 2 Kapton foils (120 μ m thickness)
- Optical access angles: up to 31°/36°

Pulsed field and cryogenics: new design

Synchrotron Applications of High Magnetic Fields Grenoble, France – November 16-17, 2006

CENTRE NATIONAL DE LA RECHERCHE

SCIENTIFIQUE

Light Graphics Window

💶 🔲 🔀 sht Graphics Window

1.000

.....

60

Intensity

80

100

40

20

0

D:\HMF_RX\Mesures_ESRF\HE2788_ID20Nov2006\TbVO_10-11-06\TbVO_030.mar3450

1800 1900 2000 2100 2200 2300 2400 2500 2600

10 15 20 25 30 35 40

Intensity

EXIT	BEAM CENTRE	FULL	OUTPUT	EXIT	BEAM CENTRE	FULL	OUTPUT
3	CAKE	INPUT	NORMALISE	?	CAKE	INPUT	NORMALISE
HELP	PROJECTION	INTEGRATE	Z-SCALING	HELP	PROJECTION	INTEGRATE	ZSCALING
PRINT	EXCHANGE	MASK	ZOOMIN	PRINT	EXCHANGE	MASK	ZOOMIN
DISPLAY	OPTIONS	1-D TRANSFORMS	UN-ZOOM	DISDI AV	OPTIONS	LD TRANSFORMS	IINZOOM

120

Future applications

- Mobile experimental device, can be used on a non-dedicated beamline (ESRF, SOLEIL)
- Other X-ray techniques: Spectroscopy (EXAFS, XMCD) Powder and single crystal diffraction (Laue Diffraction)
- Field induced magneto-structural transitions: magneto-caloric compounds, manganites, multiferroïcs, frustrated systems, superconductors, metamagnetic transitions, etc ...

New beamline at the ESRF: ID06 will become operational at the end of 2007

ANR project: SysMAF (2006-2008)

Diffraction et Spectroscopie des rayons X synchrotron sous champ magnétique intense

- NWO/FWO Vlaanderen and ESRF : beamtime allocation
- DUBBLE CRG staff : F. Meneau, D. Detollenaere, J. Jacobs
- ESRF Safety group
- P. Van der Linden : cryogenics support
- ESRF detector pool and T. Buslaps (ESRF, ID15 beamline) : X-ray detector
- P.C. Canfield (Ames Laboratory, Ames, IA) : TbVO₄ samples

Thank you for your attention !

