From apertureless near-field optical microscopy to infrared near-field night vision

Yannick DE WILDE

ESPCI – Laboratoire d'Optique Physique UPR A0005-CNRS, PARIS dewilde@optique.espci.fr

From apertureless near-field optical microscopy to infrared near-field night vision		
Experimentation :	Theory & Modelisation :	Samples preparation :
F. Formanek P-A. Lemoine	<section-header><section-header><section-header><text></text></section-header></section-header></section-header>	<section-header><section-header><text></text></section-header></section-header>

Apertureless SNOM : Principle

Apertureless SNOM based on a quartz tuning fork

Apertureless SNOM based on a quartz tuning fork

- (1) micrometer screw
- (2) leaf spring
- (3) piezoelectric stack (z)
- (4) piezoelectric disk
- (5) piezoelectric plate (xy)
- (6) sample

(7) tip
(8) tuning fork
(9) aluminum lever
(10) "triangular" plate
(11) objective

Y. De Wilde, F. Formanek, L. Aigouy, Rev. Sci. Instrum. 74, 3889 (2003)

Scan range (XY) : 34 μm x 34 μm Vertical range (Z) : 17 μm AFM resolution :

- vertical ~ 1 nm
- lateral ~ 20-50 nm

Apertureless SNOM with visible or infrared laser illumination : experimental set-up

Apertureless SNOM with visible or infrared laser illumination : experimental results SUBWAVELENGTH HOLES (#=200nm) : INFRARED imaging

AFM (topography)

GDR Optique de champ proche Appl. Optics 42, 691 (2003)

Optical resolution ~ 30 - 50 nm $\sim \lambda/200$

SNOM (3μmx3μm) Infrared illumination λ=10,6 μm

Near-field optics without external illumination

A '*regular'* SNOM requires 3 basic ingredients : Source-Probe-Detector

 Screen with subwavelength hole Original idea
 Synge, Phylos. Mag. 6, 356 (1928)

• Aperture SNOM Pohl, ..., Appl. Phys. Lett 44, 651 (1984)

Scattering tip (apertureless) SNOM
 Zenhausern, Appl. Phys. Lett. 65, 1623 (1994)

New concept :

SNOM <u>WITHOUT</u> EXTERNAL SOURCE

SUBMITTED FOR PUBLICATION

Surface waves in silicon carbide (SiC)

Surface waves in silicon carbide (SiC)

Shchegrov, Joulain, Carminati, Greffet, PRL. 85, 1548 (2000)

Probing the local electromagnetic density of states (EM-LDOS)

- <u>EM -LDOS</u> :
- $\rho(\mathbf{r}, \omega)$ dr : Probability to find a photon $\hbar \omega$ in r in a small volume dr.
- Local density of electromagnetic energy :

$$U(\mathbf{r},\omega) = \rho(\mathbf{r},\omega) \hbar \omega \frac{1}{\exp(\hbar \omega / kT) - 1}$$

EM-LDOS Energy of 1 photon

N. Photons / state

Vacuum :
$$\rho(\mathbf{r}, \omega) = \frac{\omega^2}{\pi^2 c^3}$$
 Homogeneous, isotropic

<u>But</u> : Spatial variations of $\rho(\mathbf{r}, \omega)$ are expected near an interface (evanescent modes, plasmons, phonon-polaritons, ...) or in photonic structures.

Probing the local electromagnetic density of states (EM-LDOS)

C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs and C. Girard, Phys. Rev. Lett. 88, 097402 (2002)

Probing the local electromagnetic density of states (EM-LDOS)

Joulain, Carminati, Mulet, Greffet, PRB 68,245405 (2003)

Conclusions:

 SNOM which operates with visible or infrared laser illumination

SNOM without laser :

- Detects the infrared near-field thermal radiation « Near-field infrared night-vision camera »
- Observation of near-field coherence effects on gold patterns on SiC
- Probes the EM-LDOS
 - => Behaves as an « infrared STM » (IRSTM)