

Wavelet analysis of EXAFS data

H. Funke¹, M. Chukalina², C. Hennig¹, A. Rossberg¹, A. C. Scheinost¹

¹Institute of Radiochemistry, FZ Rossendorf, Dresden, Germany ²Institute of Microelectronics Technology RAS, Chernogolovka, Russia

Why wavelets for EXAFS ?

- · Simultaneous visualisation of the r and k dependency of backscattering effects.
- Wavelet analysis eases differentiation between heavier and lighter back scatterers, even if they are at the same distance from the central atom.
- Especially in the 2nd and higher shells, this discrimination is often not possible, if solely based on Fourier transformation (FT). Wavelet transformation (WT) gives in such cases a unique answer.
- WT is able to detect (unexpected) co-species, e.g. hydrolysis species containing heavier elements.

The wavelet transform

- Wavelets as kernels of an integral transform built a wide class of functions.
- WT is a complete transformation.
- Advantage of the WT: The wavevectordistance window is flexible and adapts in such way that there is always the same number of periods in the k-window.
- **Disadvantage of the FT: If the signal** changes at one time moment, the FT changes everywhere.

Model example: k-dependence of a signal Application 2

Both test functions generate the same FT (Modulus).

The WT resolves distance and position of the two signal components.

Application 1

Objective:

The EXAFS spectra of aqueous U(VI) complexes with acetate, formiate and glycolate have a FT peak at R≈ 3.7 Å in common. Where does this peak come from?

RÍÅ

Objective

In EXAFS spectra of solid uranyl carbonate complexes, the U-C-O MS resonances and backscattering from alkaline cations overlap.

Morlet parameter:

Result:

With WT the two contributions can be resolved (example: strontium uranyl carbonate) Next step: Application to aqueous uranyl carbonate complexes

Application 3

Objective :

Verification of the replacement of 3d metals by Al in Layered Double Hydroxides (LDH)

LDH EXAFS, 20 K	FT FT (detail)
Overview wavelet Moriet parameter: κ =15, σ =1 The ordinate is analogous to the FT.	
$\begin{array}{l} \mbox{Detail wavelet} \\ \mbox{Morlet parameter:} \\ \kappa {=}5.5, \ \sigma {=}1 \\ \mbox{The wavelet ridge at } \kappa {\approx} 2.8 \mbox{\AA} \\ \mbox{is resolved and shows two} \\ \mbox{peaks at different k.} \end{array}$	
Detail wavelet Morlet parameter: κ =9.9, σ =0.47 The MS ridge at r ≈ 5.5 Å is resolved and shows two peaks at different k.	
Result : Al and Zn in the first metal shell are clearly discriminated, which is impossible with other methods.	

The focused MS paths at $r \approx 6 \text{ Å}$ show both Zn and Al.

Open questions

- Are other wavelets even better suited for EXAFS data analysis?
- Quantitative investigation of the resolution properties
- Influence of the k-weighting of the spectra, etc.

 $\int \psi(x) dx = 0, \ \psi(x) \in l^2$ Function $\cos(x)$, $\sin(x)$ Transform $\chi(k) = \frac{1}{C_{\text{tr}}} \int_{-\infty}^{+\infty} \hat{\chi}(r) e^{-2i\pi k} dr \left[\chi(k) = \frac{1}{C_{\text{tr}}} \int_{-\infty}^{+\infty+\infty} W_{\chi}^{\psi}(r,k') 2n \psi(2r(k'-k)) dr dk' \right]$ Inversion $C_{\psi} = \int \left| \hat{\psi}(\omega) \right|^2 \omega^{-1} d\omega < \infty$ Scaling $C_{FT} = 2\pi$

wт

The Morlet wavelet

FT

Harald Funke FZ Rossendorf ESRF-BM20(ROBL)/CRG

Tel. 00 33 4 76 88 23 39 Postfach 51 01 19 BP 220

unke@esrf fr 01314 Dresden and: 38043 Grenoble, France References, related links and Download of the EXAFS-wavelet program: www.esrf.fr/exp facilities/BM20/Software/Wavelets.html

Mitglied der Leibniz-Gemeinschaft www.fz-rossendorf.de

Detail wavelet plots of the three uranyl complexes

Result :

The peaks at ≈ 3.7 Å may be interpreted as:

U-acetate:

- 1 WT peak due to C atoms
- MS interactions along the carboxylate group, i.e. \rightarrow formation of a bidentate complex [Rossberg],

U-formiate:

- 2 WT peaks, due to C and U atoms
- both uranyl formiate and hydrolysis species are present at ph=4.5.

U-glycolate:

1 WT peak due to U atoms The k-dependence shows an additional \Rightarrow contribution from U atoms, i.e. formation of a polynuclear, bidentate complex [Moll].

Detail wavelet κ=7. σ=1

lend centers

8 (A -

The wavelet ridge at r≈ 3.8Å is resolved and shows two peaks at different k.