

Institute of Radiochemistry

Surface Bond Structure of Uranium Adsorbed onto Mine Water Colloids

K.-U. Ulrich¹, S. Weiß¹, A. Rossberg², A.C. Scheinost², H. Foerstendorf¹, H. Zänker¹

1 Objectives

Remediation and surveillance of abandoned uranium mines with >10⁸ m³ total void volume which has to be flooded in East Germany [1]

Migration of contaminants from abandoned mines: Stimulated or attenuated by colloids?

U-L_{III} EXAFS Spectroscopy at BM20 (ROBL-CRG)

Fourier-transformed EXAFS spectra of colloid samples from mine water and of ferrihydrite (Fh) on which 12 μ M UO₂²⁺ was adsorbed at pH 5.5 (air atmosphere) in absence (D) or in presence of sulfate and silicate (1.2 mM each; A), of only sulfate (4.8 mM; B) or silicate (0.3 mM; C), all show the same peak at R+ Δ = 2.4 Å. Hence these ions do not act as ligands in the near vicinity of UO₂²⁺, and the peak remains unexplained.

Investigation of colloid composition and uranium bond structure

2 Typical Mine Water Colloids

Element	mmol/g
[Fe]	6.68
[AI]	2.06
[S]	0.75
[Si]	0.50
[C]	0.54
[U]	0.09

SEM image (x 30,000): Colloidal particles on filter membrane, 1 μm pore size.

Particle size (SEM, PCS): 50 - 150 nm

IEP: pH 6.1, Zeta Potential below IEP: +6 mV \rightarrow high tendency of agglomeration!

Mineralogy (XRD): 2L-Ferrihydrite (Fh)

Does carbonate participate in U sorption on ferrihydrite?

Sorption of 12 μ M UO₂²⁺ (A+B) and 100 μ M UO₂²⁺ (C+D) on Fh colloids in ambient (A+C) and N₂ atmosphere (B+D). Calculated differences yield no backscattering contribution to the FT peak R+ Δ = 2.4 Å. Thus the peak cannot result from ternary carbonate ligands bidentately bound on UO₂²⁺.

New solution of surface bond structure

EXAFS refinement by Monte-Carlo Target Transform Factor Analysis [3] suggests a new sorption structure: a binary complex without carbonate or other type of ligand as presented in the right figure. This model predicts a second Fe shell at ~4.35 Å which tightly fits the experimental data.

State of the Art

Bargar et al. [2] favor sorption of ternary U(VI) carbonato complexes on hematite over wide pH range (based on electrophoretic mobility + FT-IR + EXAFS):

5 ATR FT-IR Spectroscopy

6 Conclusion

EXAFS suggests surface sorption of UO_2^{2+} on mine water colloids composed of ferrihydrite in a bidentate fashion to one FeO₆ octahedron in a way that yields a distance of ~2.88 Å to an edgeshared O atom of an adjacent FeO₆ octahedron.

Sulfate and silicate do not contribute as ligands.

Ternary complexes of bidentately bound carbonate ligands not detected at pH 5.5, $c(U)=100 \mu M$.

Since ATR-IR suggests ternary uranyl carbonato complexes under these conditions open to the atmosphere, the linkage must be monodentate.

 δ (OH) bending vibration of Fh at ~935 cm⁻¹ (A–C). Antisymmetric (v_{as}) stretching vibration of UO₂²⁺ adsorbed onto Fh at 903 cm⁻¹ (C–F). Symmetric (v_s) and v_{as} stretching vibration of CO₃²⁻ sorbed onto Fh at ~1365 and ~1500 cm⁻¹ (B–E). Unaltered v_{as} (UO₂²⁺), but shift of v_{as} (CO₃²⁻) to higher wavenumbers indicate ternary complexes of CO₃²⁻ equatorially bound onto the adsorbed UO₂²⁺.

References

[1] Ulrich KU, Zänker H, Jenk U, In: Qaim SM, Coenen HH (Eds),
Advances in Nuclear and Radiochemistry. Extended Abstracts of NRC 6.
Schriften FZ Jülich, General and Interdisciplinary, Vol. 3, 645-647 (2004).

[2] Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA. Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochim. Cosmochim. Acta 64, 2737-2749 (2000).

[3] Rossberg A, Scheinost AC. Linking Monte-Carlo simulation and Target Transformation Factor Analysis: A novel tool for the EXAFS analysis of mixtures. Physica Scripta (2005), in press.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for funding the project ZA 238/2-1/2. We are indebted to C. Fröhlich, U. Schaefer, C. Eckardt, K. Muschter, E. Christalle, A. Scholz, H. Funke, and C. Hennig.

Dr. Kai-Uwe Ulrich	phone +49 351 260 - 2076
¹ FZ Rossendorf	P.O. Box 51 01 19
² ROBL-CRG at ESRF	P.O. Box 220

k.ulrich@fz-rossendorf.de

01314 Dresden (Germany)

38043 Grenoble (France)

Member of the Leibniz Association www.fz-rossendorf.de