GRAZING-INCIDENCE X-RAY DIFFRACTION STUDIES OF ALIGNED POLYFLUORENE THIN FILMS

Matti Knaapila, Benjamin P. Lyons, Thomas P. A. Hase, and Andrew P. Monkman
Department of Physics, University of Durham,
South Road, Durham, DH1 3LE, United Kingdom
Ritva Serimaa and Mika Torkkeli

Division of X-ray Physics, Department of Physical Sciences, POB 64, FIN-00014 University of Helsinki, Finland

Laurence Bouchenoire and Paul Thompson
The XMaS, European Synchrotron Radiation Facility BP220 F-38043 Grenoble Cedex 9, France

http://www.dur.ac.uk/oem.group/
$\begin{array}{llll}-1.2 & -0.8 & -0.4 & \begin{array}{c}q_{y}\left(\AA^{-1}\right) \\ 0\end{array}\end{array}$ We present the overall structural picture of
poly(9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl) (PF2/6) in aligned thin films on a rubbed polyimide substrate ${ }^{1-3}$. This comprises molecular and selforganized intramolecular structure, the types of crystallites and oveall alignment as well as the surface morphology.

We also show how this picture can be modified by varying the molecular weight.

FIG. 1. Above: PF2/6 and the alignment method. Below: A head view or nematic and hexagonal phases (a-b). A top view after alignment ($c-d$) (not to scale).

FIG. 6. Dichroic ratio in absorption as a function of molecular weight, when the films were annealed at $80^{\circ} \mathrm{C}$ (open squares) or at $180^{\circ} \mathrm{C}$ (solid squares).

FIG. 2. (a) The phase diagram of PF2/6 as a function of molecular weight $\left(M_{n}\right)$. (b) Self-organized crystallite types I and II. (c) Molecular structure.

FIG. 3. Molecular mechanics model of a PF2/6 chain.

