Dynamical focusing of polychromatic beam using Bent Laue Crystal

${ }^{1}$ CNR- IMM Sezione di Napoli, via P. Castellino 111, 80131 Napoli, Italy - vito.mocella@na.imm.cnr.it ${ }^{2}$ ESRF, BP 220, 38043, Grenoble, France
3/oP, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha 8, Czech Republic

ABSTRACT

The main limitation in Laue geometry for the achievement of a small focus size, is the focus broadening due to the intrinsic Darwin width and to the spread of the beam in the Borrmann triangle caused by the propagation inside the crystal. We present here a method, based on dynamical focusing, allowing to improve the quality of high energy polychromatic focusing by bent crystals in Laue geometry. This completely waveoptical approach combines the propagation of the wave in the curved crystal, with the equations of Takagi1-Taupin, and for the propagation in the free space. Experiment performed on BM5 at ESRF show an excellent agreement with theory [1].

Approxinations in geometrical pocusing
umfinity marrow beams

Geometrical focusing

Geometrical focusing is based on the lens equation presented in many articles ${ }^{3}$:

$$
\begin{equation*}
\frac{2}{R}=\frac{\cos \left(\theta_{B}-\alpha\right)}{p}+\frac{\cos \left(\theta_{B}+\alpha\right)}{q}=\frac{\cos \varphi_{0}}{p}+\frac{\cos \varphi_{h}}{q} \tag{1}
\end{equation*}
$$

Incoherent sourcerpolis epproximation Incident radiation on the entrance surface is considered as to be composed of rays each associated to the wavelength obeying the Bragg law at the corresponding entrance surface point.
Apparently this is an approximation because actually the crystal "sees" the whole accepted angular divergence, given approximately by the Darwin width, for every wavelength Description of incident beam as composed by a distribution of incoherent source-point is only apparently an approximation because from polychoromaticity derive incoherence. Incoherent source points, equivalent to consider infinitely narrow beam, correctly describe the incoherence of a polychromatic incident beam [2-6].

Considering the thickness of the crystal we have a spreading over the Borrmann trinangle. We are interested in finding the conditions for which the diffracted wave from the pointsource P located on the entrance surface converges to a distance q of the geometric focus.

A parallel slab of perfect crystal focus a divergent beam for a suitable thickness $[7,8]$

In symmetric Laue geometry $\vec{h} \perp \vec{u}$, wave propagates inside a cylindrically bent crystal as in an unbent crystal
p, q
Geometrical

Focusing thickness

Si 111
25 keV
$\mathrm{p}=40 \mathrm{~m} \mathrm{q}=1.2 \mathrm{~m}$ $\mathrm{R}=2.9 \mathrm{~m}$

$$
q_{f o c}=\frac{2 \sin ^{2} \theta_{B} \cos \theta_{B}}{\sqrt{\chi_{h} \chi_{\bar{h}}}} t
$$

Cross section plot

BM 5 - E.S.R.F. $\mathrm{p}=40 \mathrm{~m} \mathrm{q}=1.2 \mathrm{~m}$

』

ID24 bender

We use a wedge shaped crystal to test the thickness dependence

Focusing in the horizontal plane

[^0] D., Ferrero, C., Epelboin, Y., J. Appl. Cryst. 36, 129-136 (2003). [4] Carvalho,, C.A.M., Epelboin Y., Acta Cryst., A49, 460 (1993); [5] Epelboin, Y., Mocella, V.,. Soyer, A., Phil. Trans. R. Soc. A 357, $2731-2739$ (1999) [6] Mocella, V., Epelboin, Y., J. Appl. Cryst. 32, 154-159 (1999) [7] Afanas'ev A.M., Khon V. G, Sov. Phys. Solid State, 19, 1035-1040 (1977) [8] Aristov et al., Acta Cryst. A36, 1002-1013 (1980).

[^0]: [1] Mocella, V., J. P. Guigay, J. Hrdý , C. Ferrero and J. Hoszowska, J. Appl. Cryst. 37, 941-946 (2004). [2] Mocella V., Epelboin Y., Guigay J.P., Acta Cryst. A56, 308-316 (2000). [3] Mocella, V., Lee, W. K., Tajiri, G., Mills

