Fermi Surface and Its Temperature Dependence in Sr₂RuO₄ by High-resolution Compton Scattering Experiments

Y. Sakurai¹, N. Hiraoka^{2,*}, M. Itou¹, T. Buslaps², V. Honkimäki², and Y. Maeno³

- 1 Japan Synchrotron Radiation Research Institute (JASRI), SPring-8
- 2 European Synchrotron Radiation Facility (ESRF)
- 3 Department of Physics, Kyoto University, Japan
- * Present: Taiwan BL, SPring-8, Japan

Electron occupation number densities (ONDs) projected on the (110) plane in momentum space been obtained using high-resolution have Compton scattering experiments to elucidate Fermi surface signatures in the derivative images of the densities. The OND measured at 20 K shows an image that represents the well-known Fermi surfaces of Sr_2RuO_4 consisting of α , β , and γ Fermi surfaces (FSs), while that measured at room temperature shows an image in which the β and γ FSs are significantly suppressed. This temperature dependence is not explained only by the band structure predicted by the LAD-based band theory, suggesting the importance of including mass enhancement factors for the reduction of the band width.

Simulations of Model Fermi Surfaces

The electron occupation number densities (ONDs) and their 1st derivatives are shown for three models of Fermi surface (FS): (a) $\alpha + \beta$ FSs, (b) γ FS, (c) $\alpha + \beta + \gamma$ FSs. Compton profiles were computed along the same directions to the experiments, and then the ONDs were obtained by following the same procedures to the data-processing of the experimental results.

The experiments were carried out at ID15B, ESRF and BL08W, SPring-8. The data at 20 K were obtained at ID15B and the data at room temperature (298 K) were at BL08W.

The OND of the 20 K data reflects the α , β , and γ FSs geometry, while that of 298 K shows only the signature of α FS. These findings are not understood within the LDA band theory. The rescaling of the band widths due to mass enhancement could explain the difference: the β and γ FSs show larger enhancement factors than the α FS [1].

[1] A. P. Mackenzie et al, PRB 54(1996) 7425.

(a) Experimental ONDs and their 1st derivatives at 20 K and 298 K
(b) Theoretical ONDs and their derivatives. The left sides are as-calculated OND, and the right sides are reconstructed OND from the theoretical Compton profiles.

