Optimization of the detection thresholds of single-photon counting sensors for breast cancer screening procedures

Julien Marchal, Khalied Hussein, Lester John, Kit Vaughan

MRC\UCT Medical Imaging Research Unit, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
Photocounting detection threshold

• **High enough** to discriminate signal from noise
• **Low enough** to detect every incident primary X-ray

Problem: False counts due to charge-sharing in Pixel Detectors (worst when decreasing pixel size)

Solution: Higher detection threshold

Problem: Image noise due to scattered radiation

Solution ?: Higher detection threshold ?

Effect of detection threshold on system performance in mammography??
Detector performance in X-ray imaging

Fourier-based linear system analysis
Statistical decision theory

Detective quantum efficiency (DQE):

\[
DQE(f) = \frac{|GqMTF(f)|^2}{NPS(f) \times q}
\]

\[
DQE \approx \frac{SNR^2}{SNR^2_{\text{max}}}
\]
Detector performance in broad-spectrum X-ray imaging

Fourier-based linear system analysis
Statistical decision theory

Detector contrast modulation in the domain of X-ray energy

Broad-spectrum DQE

\[DQE(0) = \frac{\left| \int G(E) \Delta \mu(E) q_b(E) dE \right|^2}{NPS(0) \times \int \Delta \mu(E)^2 q_b(E) dE} \]

Difference in attenuation coefficients between breast and lesion to detect

Large-area detector gain

Noise Power Spectrum
X-ray fluence

X-ray focal spot

\(\Delta \mu(E) \)

cf task-dependent DQE
System performance in X-ray imaging

Fourier-based linear system analysis
Statistical decision theory
Scatter-reduction technique

System DQE

Primary radiation transmission factor of grid

\[DQE(f) = \frac{t \cdot |GqMTF(f)|^2}{1 + SPR \cdot NPS(f) \times q} \]

Scatter-to-primary ratio

X-ray focal spot

Antiscatter grid (t)

SPR, G, MTF, NPS @ q

X-ray detector
System performance in broad-spectrum X-ray imaging

Fourier-based linear system analysis
Statistical decision theory
Detector contrast modulation in the domain of X-ray energy
Scatter-reduction technique

\[
DQE(0) = \frac{t^2 \left| \int G(E) \Delta \mu(E) q_b(E) dE \right|^2}{NPS_p(0) + NPS_s(0) + NPS_{add}} \times \frac{1}{\int \Delta \mu(E)^2 q_b(E) dE}
\]

\text{primary radiation} \quad \text{scattered radiation} \quad \text{additive noise}

DQE = 1 for an ideal X-ray image detector:
• with optimal \textbf{energy weighting} function (\(G(E) \propto \Delta \mu(E) \))
• and combined to an ideal \textbf{scatter-reduction} system (t=1 and SPR=0)

\textit{Ideal photocounting detector: Quantum-Noise-Limited,}
\textit{Quantum efficiency =1 (and Swank factor = 1)}

\textit{Scatter fluence approximated by:} \(q_s(E) \approx \text{SPR}.q_p(E) \)
Lesion detection tasks in breast cancer screening

• **Mass densities:** (border, density, capsule, halo and silhouette sign)

• **Calcifications:** (shape, density, distribution, definition, unilateral or bilateral, surrounding tissue or associated mass, increase in number, size):

 • **Type I:** calcium oxalate dihydrate
 (almost always benign)

 • **Type II:** calcium phosphate
 (related to cellular degradation and breast carcinoma)
Effect of photocounting energy threshold on DQE

Mo/Mo spectrum @ 30 kVp, *microcalcification* detection in a 4 cm thick, 50% glandular breast
Effect of photocounting energy threshold on DQE
Mo/Mo @ various kVps, microcalcification detection in a 2, 4, 6, 8 cm thick, 50% glandular breast

Thickness = 2 cm

Thickness = 4 cm

Thickness = 6 cm

Thickness = 8 cm
Effect of photocounting energy threshold on DQE

W/Al @ various kVps, microcalcification detection in a 2,4,6,8 cm thick, 50% glandular breast

Thickness = 2 cm

Thickness = 4 cm

Thickness = 6 cm

Thickness = 8 cm
Figure of Merit (FOM) for breast cancer screening

Signal-to-noise ratio for lesion detection

$$\text{FOM} = \frac{\text{SNR}^2}{\text{Dg}} \propto \frac{\text{Benefit}}{\text{Risk}}$$

Mean glandular dose

$$\text{DQE} \approx \frac{\text{SNR}^2}{\text{SNR}_{\text{max}}^2}$$

allows a figure of merit describing system performance to be defined as:

$$\text{FOM} = \frac{\text{DQE}(0) \times \text{SNR}_{\text{max}}^2}{\text{Dg}}$$
Effect of photocounting energy threshold on FOM
W/Al @ various kVps, microcalcification detection in a 2, 4, 6, 8 cm thick, 50% glandular breast
Effect of photocounting energy threshold on FOM

W/Al @ various kVps, in a 4 cm thick, 50% glandular breast
Microcalcification & tumor detection

Microcalcification detection
Tumour detection

Breast thickness = 4 cm
Conclusion & future work:

• Effect of the detection energy threshold on the mammographic performance of photocounting sensors can be quantified by examining:

 - DQE @ 0 lp/mm : modified to include effects related to energy weighting and scattered radiation

 - FOM: considering the influence of X-ray spectral shape (tube voltage, anode/filter combination) on system performance

• Higher photocounting thresholds can be implemented when imaging thick breasts without compromising system performance. This might allow charge-sharing-related image noise to be reduced in some situations.

• An accurate optimization of detection thresholds requires the precise knowledge of the spectral distribution of scattered radiation (measurements or Monte-Carlo simulations)
Conclusion & future work:

• A task-dependent aspect is reintroduced in the description of system performance in mammography. This evolution is driven by technological developments in the field of semiconductor-based X-ray imagers.

• A DQE analysis at 0 lp/mm is sufficient for detection threshold optimization, but the frequency dependence is needed to compare the performance of various X-ray imaging technologies.

• This extension of linear system analysis is of a more general interest in X-ray imaging than threshold optimisation:

The performance of X-ray imaging systems must be described in comparison to ideal energy-sensitive sensors operating in scatter-free conditions.
Conclusion & future work:

Development of a **Low-Dose Digital Mammography** system at UCT/MRC Medical Imaging Research Unit, based on existing **slot-scanning technology**

→ Platform for testing:

- extended imaging theories,
- new detector technologies,
- new scanning methods.
Acknowledgements:

- Medical Research Council of South Africa
- National Research Foundation
- Lodox Systems (Pty) Ltd.

• **Prof Ken Smith** (University of Glasgow)
• **Prof Kit Vaughan** (University of Cape Town)