A resonant inelastic X-ray emission study of YbAl₂ under pressure

C. Dallera¹, E. Annese², J.-P. Rueff³, A. Palenzona⁴, G. Vanko⁵, L. Braicovich¹, A. Shukla⁶, M. Grioni⁷

¹INFM-Politecnico di Milano ²INFM-Università di Modena ³Universitè Pierre et Marie Curie ³Università di Genova ⁵ESRF ⁶Lab. de Mineralogie-Cristallographie, Jussieu, ⁷EPFL

The issue

Yb and Ytterbium compounds undergo valence changes as a function of temperature and pressure. These changes have been investigated by studying the Pressure -Volume relation, the lattice constant, and the change of lineshape of L₃ X-Ray absorption spectra. This method gives the most direct information

on the electronic population but suffers from the large lifetime width of the final state of the $2p_{2}$ 5d XAS process.

Yb absorption and emission at the L_3 edge

 Yb^{2+} (4f¹⁴) and Yb^{3+} $(4f^{13})$ are split by the interaction with the core-hole. The energy splitting is around 7 eV in the final state of the XAS and XES process

resonant excitation ($hv_{IN} \sim 8950 \text{ eV}$) and followed the process $2p^{6}5d^{n}$, $2p^{5}5d^{n+1}$, $2p^{6}3d^{9}5d^{n+1}$ (hv_{IN} ~ 8950 eV). At these energies the probing depth is $\sim 1 \,\mu m$.

Partial Fluorescence Yield spectra

