The Formation and Structure of a Dense Octahedral Glass

<u>Guthrie M.</u>^{1,2,*}, Tulk C.A.¹, Benmore C.J.², Xu J.³, Yarger J.L.⁴, Mao H.K³. & Hemley R.J³.

*Current address: School of Physics CSEC, The University of Edinburgh, Edinburgh, EH9 3JZ, U.K. email: mguthrie@ph.ed.ac.uk, ¹Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA., ²Argonne National Laboratory, Argonne, IL 60439, USA., ³Geophysical Laboratory, Washington DC 20015, USA., ⁴University of Wyoming, WY82071-3838, USA.

The structure of tetrahedral-oxide glasses at ambient pressure is well studied [1]. However, at the pressures of the Earth's mantle these glasses, and by extension liquids, are known to undergo a transition to a dense, octahedrally-coordinated structure [2]. However, the continuous nature of this transformation has been debated, and the concurrent changes in intermediate-range order are unknown. We have studied the structure of vitreous germania, an archetypal tetrahedral glass, using in-situ x-ray and neutron diffraction with increasing pressure up to 15 GPa. Below 5 GPa, additional atoms encroaching on the first tetrahedral shell are seen to be a precursor to coordination change. Between 6 and 10 GPa we observe structures with a constant average coordination of nearly five. At 15 GPa, the structure of a fully octahedral glass has been measured. It is characterised by a mixture of both edge-shared and corner-shared octahedra. The dense octahedral-glass structure may provide an insight into the behaviour of viscous melts in the mantle.

References

A.C. Wright, J. Non-Cryst Solids 179, 84 (1994).
J.-P. Itiè et al Phys. Rev. Lett 63, 389 (1989).