HIGH RESOLUTION, HIGH ENERGY and HIGH SPEED

By T. MARTIN ESRF

X-ray Detectors Workshop 14.02.2003 Grenoble

1

OUTLINE

- 1. Introduction
- 2. State of the art: High-resolution detector at ESRF
- 3. Detector for high resolution and high energy
- 4. FRELON camera for high frame rate
- 5. Performance
- 6. Further developments

INTRODUCTION

• REQUEST for detector

Microstructure evolving in few minutes

- High spatial resolution: a few ?m ? small FOV
- DR: 12 bit minimum
- High energy (white beam, peak at 65keV)
- 500 images to be acquired in 30 seconds ? 16 fps minimum

HIGH-RESOLUTION DETECTOR

State of the Art IN-LINE DETECTOR For Low Energy

PRINCIPLE:

HIGH-RESOLUTION DETECTOR FOR HIGH ENERGIES

SCINTILLATOR

Its 4 main characteristics are:

- Absorption coefficient: ~Z_{eff}⁴ x ?
- Light yield depends on activator and its concentration
- Spectral response must be matched with QE of CCD
- Afterglow depends on exposure time and activator concentration

X-RAY IMAGING with SCINTILLATOR

Limits of resolution

CHOICE OF CAMERA FReLoN camera on the market

14.02.2003 Grenoble

The FReLoN PROJECT

Main Features

- High pixel rate
 - 20 Mpls/s throughput
- Low noise readout
 - 25 e⁻
- Dynamic range
 - DR= 14 bit

AND

Parallel Readout AND Low Noise AND High Speed

kinetic pipeline mode

FReLoN Noise and Integral Non-Linearity

High resolution, high energy and high speed system Application

7510 projections – Frelon 2K – no binning – exposure time 40 ms – ROI 1024 x 128 – LAG 1?m – magnification x 9

Courtesy: M. DI MICHIEL, ESRF

PERFORMANCE

Image depth:	14 bit	input pixel size:	0.47?m or 1.4?m
Pixel size:	14 x 14 ?m²	Field of view:	1x1 mm ² or 2.9x2.9 mm ²
ADC unit:	20 e ⁻	Number of pixels:	2048 x 2048
Read-out noise:	25 e ⁻	Spatial resolution:	4?m @ 65keV
Frame rate 2kx2k:	5 fps	DQE (6 ?m LAG,65keV)	: 2.5%, mainly limited by absorption
	10 fps (2x2 binning)		

FReLoN

Other applications: CCD camera with taper optic Used at ID17

FReLoN

Other applications: FReLoN coupled to image intensifier

For more information, see Poster

Developed for PX, SAXS, WAXS, materials diffraction Used at ID2 (2 systems), ID11 and ID15

Characteristics with FI	ReLoN 2kx2k 14 bit:
Detection area :	210 mm diagonal
Energy range :	5-30 keV (Be input window)
Spatial resolution :	200-300 µm LSF FWHM
DQE :	? 0.6 @ 8 keV
Noise :	? 5-10 keV/pixel r.m.s.
Readout time :	< 100 ms in 2x2 binning

FURTHER DEVELOPMENTS

SCINTILLATOR Lu₂O₃:Eu³⁺ and Gd₂O₃:Eu³⁺

- 1. Improves absorption
- 2. Improves light yield
- 3. Non-luminescent substrate

SCINTILLATOR Choice of fabrication process

- → Making of very pure oxide film
- → High-density film and good optical quality
- → Homogeneous doping at molecular scale
- ➡ Possibility to deposit on large area
- ⇒ Shape and kind of substrate

 \implies Price

SCINTILLATOR

W wire image with 800nm Gd₂O₃:Eu³⁺ scintillator thickness

X-ray generator with Cu anode, 30kV, 40mA. Field of view: 1.4 x 1.1 mm².

CONCLUSION

- High resolution and high energy and high speed
 - R = 4? m fwhm with white beam, peak at 65keV
 - 751 images in 65s
- Scintillator
 - Encouraging result with 800nm Gd₂O₃:Eu³⁺ scintillator
 - ? Beam position Monitoring
 - Thicker Lu_2O_3 : Eu^{3+} and Gd_2O_3 : Eu^{3+} scintillator
- New x10 reflecting objective (compromise between magnification and NA, reduced obscuration)
- 2nd FReLoN generation
 - FReLoN 16bit
 - Frame transfer mode
 - Fast readout board ? Extended to non-FreLoN camera, like Dalsa camera (60fps)

Staff involved in Project

- ATEG Group (ESRF) for Frelon: <u>J.C. Labiche</u>, E. Collet, L. Siron and D. VanBrussel
- Special Detectors Group (ESRF): <u>T. Martin</u>, J. Borrel, C. Jarnias, F. Lesimple and C. Ponchut
- BLISS group (ESRF): <u>D. Fernandez</u>, G. Berruyer and V. Rey
- ID15 Beamline (ESRF): <u>M. Di Michiel</u>, T. Buslaps, J.M. Merino, V. Honkimaki
- Laboratoire de Physico-Chimie des Matériaux Luminescents, University of Lyons, France. <u>C. Dujardin</u>, A. Garcia-Murillo and C. Leluyer

