

Advances in X-Ray Scintillator Technology

Roger D. Durst Bruker AXS Inc.

© 2003 Bruker AXS All Rights Reserved

Acknowledgements

- **∠**T. Thorson, Bruker AXS
- ✓Y. Diawara, Bruker AXS
- E. Westbrook, MBC
- ∠J. Morse, ESRF
- ∠C. Summers, Georgia Tech/PTCE
- **B.** Wagner, Georgia Tech/PTCE
- 🖉 V. Valdna, TTU
- ✓ Supported in part by NIH RO1 RR16334

Scintillator-based imagers

- One of the earliest techniques employed for imaging ionizing radiation
- Scintillator-based imagers remain one of the most flexible and successful techniques for x-ray imaging
 - Crystallography
 - SAXS/WAXS
 - Microtomography...
- However, conventional scintillators have significant limitations...

Limitations of conventional scintillators: point spread function

Point Spread Function (PSF) is limited by scattering in polycrystalline phosphor screen: typically > 100 ?m FWHM

Limitations of conventional scintillators: Light loss in demagnifying optics

Conventional screens are Lambertian
 However, light emitted at *large angles* is lost in the optics
 Only *low angle* light is transmitted to CCD

Transmission efficiency scales as 1/m²

Present day integrating detectors do not achieve optimal sensitivity

- Gruner (1996) noted that for optimal dynamic range and near-quantum limited performance an integrating detector (CCD, a-Se, ...) should achieve a SNR of order 1.
- Because of transmission losses and point spread, no present *large area*, integrating detectors satisfy this criterion...

	CCD (typical)	a-Se (typical)
Quantum gain	10 electrons	120 electrons
Noise	10 electrons	500 electrons
Integrated noise	40 electrons	500 electrons
True SNR	0.25	0.25

Design of high gain X-ray phosphors

Characteristics of efficient x-ray phosphors

- ? High x-ray absorption (large ? x-ray)
- ? Low cost per electron-hole pair (small ?E_g)
- ? Efficient electron-hole transport
 (S?1)
- ? High luminescent efficiency
 (QE_I?1)
- ? Low optical self absorption (small ?_{ph})

Development of high gain x-ray phosphors

	E _g (eV)	E _{eh} (eV)	Gain (photons/x-ray)
ZnTe	2.3	5.0	2,400
ZnSe	2.7	5.9	2,040
ZnS	3.8	11.0	1,040
Csl	6.4	16.0	755
Gd ₂ O ₂ S	4.4	17.2	700
CaWO ₄	4.6	32.2	370

•ZnSe:Cu,Ce has the highest known x-ray conversion efficiency

-Three times higher than Gd₂O₂S:Tb

-Status: commercially available

-However, not suitable for MAD phasing because of Se edge

•ZnTe under development for macromolecular applications*

- -Collaboration with MBC, Georgia Tech, TTU.
- -Efficiency potentially comparable to ZnSe

-No Se edge, suitable for MAD experiments

Design of high resolution scintillators: Thin film phosphors

- ✓ Very high spatial resolution possible using <u>thin film</u> <u>scintillators</u>
 - Thin (~15 ?m) solid film deposited on glass substrate
 - No scattering, thus better PSF (e.g., Koch 2000)
- However, solid scintillating films are inefficient
 - Typically >90% of light is trapped in screen by total internal reflection
 - <10% of light is emitted</p>
- Thin film scintillators give high resolution but poor sensitivity

Ideally, scintillator emission should be forward peaked

- Allows more efficient coupling to optics
- Prevents trapping by total internal reflection
- How could such a screen be realized?

Directional emission in a resonant cavity

- In a conventional scintillator, emission is spontaneous
- ✓ Random, no preferred direction

- In a laser, emission occurs in a high-Q resonant cavity
- Emission is stimulated: highly directional
- Can this principle be applied to a scintillator?

Quantum Resonance Convertor (QRC)*

- Phosphor deposited between mirrors
- ∠Mirror x-ray transparent
 - Low-Z dielectric stack
- Phosphor layer must be sufficiently thick so as to absorb incident x-rays
 - \sim >12 ?m for Gd₂O₂S, 8 keV
- Vacuum deposited on substrate
 - 🛛 glass
 - fiber optic faceplate
- *Patents pending

QRC vs laser

- ✓QRC and laser have similar structures, however QRC is not a laser
 - There is no gain medium (I.e., no population inversion)
 - There is no amplification in a QRC, the same number of photons are emitted but the angular distribution of the emitted light is modified

$$W_{i? ?n?}? \frac{2?}{?^2} \sum_{n} \left| \left\langle n \left| e \hat{r} ? \hat{E}_T(R) \right| i \right\rangle \right|^2 d\left(?_n ??_i\right) \right|$$

In a conventional scintillator, emission probability is isotropic
 In QRC, emission is strongly peaked due to interference

- Resonant modes (forward peaked) enhanced
- Non-resonant modes (high angle) suppressed

QRC prototypes

Prototype QRC screens up to 220 mm diagonal have been produced to date

> Bruker AXS © 2003 Bruker AXS All Rights Reserved

QRCs exhibit strongly forward peaked emission

>3-5 times brighter than conventional screen demonstrated

∠ In theory, with improved cavity design gains >20 are possible

QRC spatial resolution

- No scattering in screen allows high spatial resolution
- PSF < 20 microns: 5 times better than conventional phosphor screen

Pattern generated by 10 micron e-beam on QRC

Bruker AXS © 2003 Bruker AXS All Rights Reserved

BRUKER

Application of QRCs: Fiber optic coupled CCDs

- ✓QRC screens will be back compatible with new and existing fiber optic cameras
 - Multilayer deposited on fiber optic faceplate
- Simple field upgrade
 - Improved sensitivity (est. >3X)
 - Improved point spread function (est. >4X)

Application of QRCs: Advanced lens-coupled cameras

- Forwarded-peaked emission from QRC couples more efficiently to lens optics as well
- Lens-coupled QRC
 - Iarge active area
 - very high sensitivity
 - high resolution
 - relatively low cost
- Especially suitable for high speed CCDs
 - Eg., Frelon camera...

200 mm active area lens-coupled detector

Summary

Conventional scintillator screens are not optimal

- Scattering degrades spatial resolution
- Lambertian emission couples inefficiently to demagnifying optics
- Screens can be improved by
 - Increasing the screen quantum efficiency: ZnSe, ZnTe
 - Modifying the emission profile to be highly forward peaked: Quantum resonance scintillator
- New scintillator technologies are compatible with both fiber optic and lens-coupled CCD camera designs
 - Also TFT arrays or CMOS...