

Monday 4th to Wednesday 6th February 2002 - ESRF, Grenoble, FRANCE

Reliability and Availability Aspects of the IPHI Project

Pierre-Yves Beauvais CEA/DSM/DAPNIA

for the IPHI Team

Table of contents

- Brief description of IPHI
- Installation and operation schedule
- SILHI / IPHI technological choices
- SILHI reliability /availability tests
- RFQ and RF system weak points
- Summary / comments

Monday 4th to Wednesday 6th February 2002 - ESRF, Grenoble, FRANCE

ΙΡΗΙ

Injecteur de Protons Haute Intensité High Intensity Proton Injector

Prototype of the low energy part of HPPAs

Collaboration CEA/DSM - CNRS/IN2P3

HPPA Applications

Application	Max beam power	Energy	Average current
Accelerator Driven Systems			
% 100 MWth demonstrator	~ 5 MW	~ 600 MeV	~ 10 mA
Industrial Facility	~ 50 MW	~ 1 GeV	~ 50 mA
Irradiation tool (IFMIF)	10 - 40 MW	~ 1 GeV	~ 10 – 40 mA
Condensed Matter Studies (SNS, ESS)	5 MW	1.3 GeV	3.75 mA
Radioactive Beams	> 200 kW	> 200 MeV	~ 1 mA
Muons, Neutrinos	4 MW	2 GeV	2 mA

IPHI Schematic layout of the Injector

Monday 4th to Wednesday 6th February 2002 - ESRF, Grenoble, FRANCE

IPHI installation and operation schedule

		2000	2001	2002	2003	2004	2005	2006	2007
N⁰	Nom de la tâche	T1 T2 T3 T4	T1 T2 T3						
1	IPHI intallation and operation								
2	CLS I PHI		+						
3	Safety report sent to DSIN			+					
4	IPHI installation authorization			•	_				
5	IPHI operation authorization				•				
6	IPHI site "cleaning up"			31/01					
7	IPHI / INB 48 division		0	4/03 28/03					
8	Conventional facility developments								
9	Power supply distribution overhaul and adaptation	01/11			30/06				
10	Building developments	01/11		31/12					
11	General cooling system overhaul and adaptation	05/0	02		30/06				
12	IPHI 100 keV								
13	SILHI / LBET settling			29/03 28/08					
14	SILHI 100 keV tests			29/08	1	28/01			
15	IPHI 5 MeV								
16	Accelerator assembly (RFQ, RF, HEBT, BS)			29/03	1	04/03			
17	Radiation shielding installation			01/07		31/12			
18	RF conditioning of RFQ				0	5/03 06/07			
19	5 MeV tests (pulsed mode)					07/07	-03/01		
20	5 MeV tests (CW)					04/0	1 06/07	┢┓	
21	IPHI 10 MeV							Y	
22	Accelerator assembly (DTL, RF, HEBT, BS)						02/	02/08	
23	RF conditioning of DTL							03/08	04/12
24	10 MeV tests (pulsed mode)							05/12	06/03
25	10 MeV tests (CW)							0	7/03 06/06

Monday 4th to Wednesday 6th February 2002 - ESRF, Grenoble, FRANCE

SILHI source and LEBT

- (100 keV, 100 mA CW)
- tests and optimization in progress at Saclay

Proton beam at cross-over 6 kW on few mm²

SILHI / IPHI technological choices

- Large safety margins on all LVPS and HVPS
- Optimization of PS air or water cooling
- Separate cable path and shielding for signals and power
- Galvanic insulation of analog and digital signals
- Use of EMI hardware especially for all sensitive electronic devices
- Minimization of electric fields between extraction electrodes (electrode shape optimization)
- Development of EPICS controlled automatic start/restart procedures
- Development of beam current feedback
- Development of specific beam diagnostics

97 Mai 99 95 75 106 24 5 4 5.3 27.5 5 97.9 er 99	Oct. 99 95 75 104 1 n. appl. 2.5 103 99.96	March 01 95 118 336 53 ≈ 6 ≈ 18 25 95.2	June 01 95 114 162 7 23.1 2.5 36 99.8	3 with a limited extracted beam (old extraction system) and the 2 last ones with the new system which limits beam losses on the electrodes. A new run will be performed at~60 mA at the beginning of 2002.
95 75 106 24 5 4 5.3 27.5 5 97.9 er 99	95 75 104 1 n. appl. 2.5 103 99.96	95 118 336 53 ≈ 6 ≈ 18 25 95.2	95 114 162 7 23.1 2.5 36 99.8	(old extraction system) and the 2 last ones with the new system which limits beam losses on the electrodes. A new run will be performed at~60 mA at the beginning of 2002.
75 106 24 5 4 5.3 27.5 5 97.9 er 99	75 104 1 n. appl. 2.5 103 99.96	118 336 53 ≈ 6 ≈ 18 25 95.2	114 162 7 23.1 2.5 36 99.8	and the 2 last ones with the new system which limits beam losses on the electrodes. A new run will be performed at~60 mA at the beginning of 2002.
106 24 5 4 5.3 27.5 5 97.9 er 99	104 1 n. appl. 2.5 103 99.96	336 53 ≈ 6 ≈ 18 25 95.2	162 7 23.1 2.5 36 99.8	which limits beam losses on the electrodes. A new run will be performed at~60 mA at the beginning of 2002.
24 5 4 5.3 27.5 5 97.9 er 99	1 n. appl. 2.5 103 99.96	53 ≈ 6 ≈ 18 25 95.2	7 23.1 2.5 36 99.8	A new run will be performed at~60 mA at the beginning of 2002.
5 4 5.3 27.5 5 97.9 er 99	n. appl. 2.5 103 99.96	≈ 6 ≈ 18 25 95.2	23.1 2.5 36 99.8	A new run will be performed at~60 mA at the beginning of 2002.
5.3 27.5 97.9 er 99	2.5 103 99.96	≈ 18 25 95.2	2.5 36 99.8	A new run will be performed at~60 mA at the beginning of 2002.
27.5 5 97.9 er 99	103 99.96	25 95.2	36 99.8	at ~60 mA at the beginning of 2002.
5 97.9 er 99	99.96	95.2	99.8	at the beginning of 2002.
er 99	mminini Ender uz		140 7	
y : 99,96%	Energy = 95		120 100 80 40 40 40 40 40 40 40 40 40 4	Availability : 99.8 % For a 162 hour run
	ty:99,96%	ty:99,96%	ty: 99,96%	ty:99,96% 60 35 h 60 HT (K) 40 Energy = 95 keV 20 //0 k//0 k//0 m//0 m//0 m//0 m//0 m//0 m

 \mathbf{T} \mathbf{T}

SILHI reliability tests review

More than 1000 hours of continuous operation already performed during 6 separate tests.

- Almost all the beam interruptions are due directly or indirectly to HV breakdowns inside the extraction electrode system.
- Intermediate electrode fed by a "low current" (10 mA) HVPS constitutes a weak point which has to be fixed
- No HV breakdowns without beam (after completion of the HV electrodes conditioning)
- The breakdown rate seems to decrease rapidly when the beam current is decreased (to be confirmed by specific tests)
- ► No PS failure due to HV breakdown
- ► No PLC reboot due to EM disturbances
- EPICS controlled automatic restart needs at least several seconds to recover the beam

A fast analog feedback could solve this problem (must be demonstrated)

RFQ cavity and RF system

- Experience from several laboratories shows that a large fraction of beam interruptions comes from an RF feed interruption due to :
 - Sparks inside the cavity induced by beam losses and/or low vacuum,
 - Vacuum bursts or spikes induced by sparks,
 - Multipactoring in the tapered wave guides at low power (< 200 kW),</p>
 - Arcs in the RF windows,
 - Low level RF interrupted by a reflected power detection
 - Instrumentation fault (sensors, switches...)
 - Defect or failures on utility and ancillary systems
- Beam interruption probability can be minimized by choices concerning
 - ► the RFQ design,
 - The vacuum system design
 - ► The RF power distribution
 - The characteristics of the beam entering the cavity (emittance, aberrations, matching, alignment...)

IPHI RFQ choices (1)

RFQ design

- Very slow adiabatic beam bunching (gentle buncher)
- Vane shape optimization (minimization of electric field)
- Limitation of Kilpatrick (1.7)
- Optimization of theoretical transmission (99.2%)
- Safety margins (emittance, current)
- RFQ vacuum system
 - High pumping capacity (12000 / 5700 I/s)
 - Dry pumps and cryogenic pumps
 - Optimization of pumping ports design
 - No elastomer O rings
 - Minimization of desorption rate
 - UHV cleaning and conditioning rules
 - Possibility of heating up to 120°C (cavity under vacuum)

IPHI RFQ choices (2)

RFQ RF system

- Safety margins on RF windows (450 kW per window tested up to 900kW)
- RF power coupling through only 4 tapered guides to work above multipactoring levels, (experince of LEDA)
- Safety margins on klystron power (600 kW / 850 kW per klystron)
- Beam caracteristics
 - Improvement of emittance by optimization of extraction system,
 - Control of beam caracteristics at the RFQ matching point
 - reduction of optical aberrations by improvement of the space charge compensation (gas addition in the LEBT)
 - ► Use of total r r' emittance instead of RMS emittance,
 - Development of non interceptive beam diagnostics and of beam intensity control devices

As prototype of the low energy part of HPPAs and especially of accelerators for ADS, Reliability, Availability

and stability are of the major concern for IPHI.

- These qualities have to be taken in account from the conception and development process
- As IPHI is a test facility, commissioning and operation periods will be essential to learn about and improve the weak points.
 - Specific operation tests related to ADS requirements will be performed.
 - weak points encountered will have to be checked and fixed when possible
 - At least, way to cure these points on a high energy industrial machine will have to be proposed. (PS redundancy or spare for example...)