TOWARDS A COMMON MONITORING SYSTEM FOR THE ACCELERATOR AND TECHNICAL CONTROL ROOMS AT CERN

G. Arduini, C. Arimatea, M. Batz, J.M. Carron de la Morinais, D. Manglunki, K. Priestnall, G. Robin, M. Ruette, P. Sollander
CERN, Geneva, Switzerland
Table of Contents

- CERN Operation Today
- Why?
- What to Monitor?
- How to get there?
- The Method
- What does it look like?
- Benefits
- Perspectives …
CERN Operation Today
Why?

• The LHC challenge
• **Increase the overall accelerator availability** by reduction of restart time after (major) breakdowns
• **Monitor the availability of accelerators** for concurrent modes of operation in close collaboration with all operation teams
• **Tool for re-scheduling and training**
“Gestion Technique Pannes Majeures” (GTPM)

http://gtpm.web.cern.ch/gtpm/SPSRestart/index.html
What to Monitor?

- Cooling & Ventilation
- Electricity (HT, MT, BT, …)
- Safety (Technical Faults)
- Access (Technical Failures)
- Computing Infrastructure
- Vacuum (Pumps, Pressures …)
- Accelerators (power supplies, magnets, …)
- Cryogenics (Pumps, Temperatures)

MCR
PCR
TCR
How to get there?

- **Accelerator Oriented Monitoring**
- **Homogeneous method to define/engineer monitoring tools:**
 - Identical for all actors: (MCR, PCR, TCR, stand-by services, …)
 - Oriented to operator role & tasks
- **Monitoring tools for:**
 - Failure assessment & accelerator restart
 - Systems, functions and correlations: (elec., cooling, RF, power converters …)
The Method

Accelerator Operation Scenarios

System Remote Supervision

Accelerator Control System

Technical Infrastructure Monitoring System

Monitoring Engineering

Accelerator Systems & Processes

Technical Infrastructure Systems & Processes

System Design and Documentation

Task Oriented Monitoring Diagrams / Tools

Operation Oriented System Documentation

System Remote Supervision

Accelerator Control System

Technical Infrastructure Monitoring System

Monitoring Engineering

Accelerator Systems & Processes

Technical Infrastructure Systems & Processes

System Design and Documentation

Task Oriented Monitoring Diagrams / Tools

Operation Oriented System Documentation
Individuation & Identification

• Operation scenarios
 – Injection, beam acceleration, proton physics, ion physics …
• Actors & Responsibilities
 – control room operators, stand-by services, equipment experts …
• Accelerators/Experiments: main systems/processes
 – vacuum, magnets, beam instrumentation …
 – critical for the running of the accelerator/experiment
• Technical infrastructure systems
 – electricity, cooling, ventilation, access systems …
• Sub-systems/processes
 – dipoles, kickers, cooling towers, demineralised water …
• System/process/sub-process correlation
• Critical paths for each operation scenario
4 Levels of Monitoring Tools

- General States Overview
- Accelerator Functionality View
- Detailed Infrastructure Monitoring Diagram
- Process Equipment View
Functional/Logical switch-on Sequence
Power Supply

Cooling
Accelerator Functionality - 2

SPS injection - BA2

- MM Cooling

Demineralized water

PS DP MM Main magnets

SMD

Lines Uptimes

ARW, Grenoble, 4-6 February 2002 M. Batz CERN, Geneva, Switzerland
Detailed Infrastructure Monitoring Diagram

Functional/Logical switch-on Sequence

Preferred switch-on

ARW, Grenoble, 4-6 February 2002
M. Batz CERN, Geneva, Switzerland
Process Equipment

Power Supply

Cooling
Benefits

- **Improvement of collaboration** and understanding between all actors
- Best possible **restart strategy** to respond to the **operation scenarios**:
 (beam in TT10, beam acceleration …)
- Impact estimation of failure to redefine priorities and **machine schedules**
- Impact evaluation of maintenance & process derivations on machine exploitation – **conditional maintenance**
- **Training tool** for newly recruited operators and external contractors
Accelerator Oriented Monitoring

- Accelerator Operation Scenarios
 - Accelerator Control System
 - Technical Infrastructure Monitoring System

- System Remote Supervision
 - Monitoring Engineering
 - Accelerator Systems & Processes
 - Technical Infrastructure Systems & Processes
 - System Design and Documentation

- Task Oriented Monitoring Diagrams / Tools

- Operation Oriented System Documentation

- Technical Infrastructure Monitoring System

- Accelerators: power supplies, magnets...

- Cryogenics: pumps, tritators

- TCR

- Computing Infrastructure

- Vacuum

- Refrigeration

- Electricity: HT, MT, BT...

- Safety: Technical Faults

- Access: Technical Faults

- Cooling & Ventilation

- Operation: MDR, PCU, JT, Equipment, Machines, ID, IDP

ARW, Grenoble, 4-6 February 2002

M. Batz CERN, Geneva, Switzerland
Perspectives …

• Extension to the **PS-Complex**
• Extension to the **experimental areas**
• Complete implementation in **monitoring systems**
• Establish **Information & Data Management**
• Extension to the **LHC machine**
• Extension to **LHC experiments**