

Formal Analysis of SRS X Ray Hutch Safety Systems

J R Alexander

M T Heron

P D Quinn

R Ryder

CLRC Daresbury Laboratory, UK

Accelerator Reliability Workshop February 2002 Grenoble

Outline

- SRS X Ray Hutches: the Safety Issue
- Regulations
- The Formal Study
 - Emphasis on Human Factors
- Conclusions of the Study
- Value of this type of Study

SRS X Ray Hutch

X Ray Hutches

- 33 enclosures on the SRS
- 150,000 to 200,000 hutch search and lock up operations per year.
- Non 'expert' users

HAZARD - 1

Beam line	Dose rate in Gy per h					
	Within beam		Scattered to 1m			
	White	Monochromatic	White	Monochromatic		
Dipole	4.4 x 10 ⁸	4.4 x 10 ⁵	1.2	0.001		
Wig 9	1.0 x 10 ⁹	1.0 x 10 ⁶	16.5	0.017		
Wig 16	1.1 x 10 ⁹	1.1 x 10 ⁶	18.6	0.019		

HAZARD - 2

Beam	Time for burn Within beam		Time for dose limit Scattered to 1m	
Line				
	White	Monochromatic	White	Monochromatic
Dipole	16 μs	16 ms	3 s	3000 s
Wiggler 9	7.2 μs	7.2 ms	0.2 s	218 s
Wiggler 16	6.5 μs	6.5 ms	0.2 s	194 s

Regulations

- Council Directive 96/29 Euratom
 - Laying down basic safety standards for the protection of health workers and the general public against the dangers arising from ionising radiation
- Ionising Radiation Regulations 1999
 - Update of UK regulations to include 96/29
 - Enacted 1st January 2000

UK HSE Review of SRS

- Facility reviewed by Specialist Radiation Inspector
- Upgrades required to some systems.
- Discussions on some aspects difficult due to subjective assessments of risk.
- Commission formal study of system safety
 - Nuclear industry safety consultants AEA
 Consulting now SERCO.

Fault Tree Analysis

- Define Top Event
 - Failure to ensure hutch clear of personnel when
 X rays are present
- Define all possible sub-events to the top event
- Define all possible sub-events to the subevents
- Keep going until all base events identified.

Fault Analysis

Fault Analysis

Typical Base Events

- Relay contact fails closed
- Searcher ignores warning sign
- Pneumatic control valve seizes

Fault Tree Analysis

- Assign probabilities to all events
- Use software to analyse the event tree and minimal cut sets showing combinations that can give rise to the top event.

Human Factors

- Nine base events describing possible human errors in searching a hutch were identified.
- Events are ranked according to likelihood by asking several well informed people to conduct a paired comparison exercise.
- Probabilities assigned using formal techniques and interpolation

Examples of Human Base Events

- Bad Search 1x10E-05
- No Search 1x10E-01
- Individual incapacitated 1x10E-02
- No response 1x10E-02

THERP

- Technique for Human Error Rate Prediction
- Developed for Nuclear Power Plant Operations
- Gives data relating to alarm response and inspection tasks

HEART

- Human Error Assesement and Reduction Technique
- Assesses groups of tasks and classifies them
- Example "Routine highly practised, rapid task involving relatively low level of skill " is assigned probability of 2x10E-02

Results

- Highest probability of top event is 5x10⁻⁰⁸
- Minimal cut sets dominated by human factors
- Hardware failure sequences have probability of failure at 10⁻¹² level

Total probability

Example

 2.5×10^{-08}

•	Person in hutch at start of search?	0.001
•	Searcher not thinking?	0.05
•	Searcher fails to see person?	0.05
•	Person incapacitated?	0.01

Issues Arising

- Experimental Area access policy: Users and public
- Staff and user training policy: probabilities are strongly affected by effectiveness of training.
- Site alcohol policy
- Staff / user working hours policy
- X Ray hutch layout and inspection

Risk Tolerability

- No one will say what is tolerable!
- High Risk 10⁻⁰⁴/year Intolerable
- Risk reduction possible 10⁻⁰⁵/year ALARP Tolerable
- Negligible risk 10⁻⁰⁶/year Broadly acceptable.
- - for Workers. Lower risks demanded for members of the public

Value of the Formal Study

- High: requires comprehensive review of all aspects of the system
- Satisfies duty in law to complete a "suitable and sufficient" risk assessment
- Provides a more objective basis for discussions with the specialist regulator.