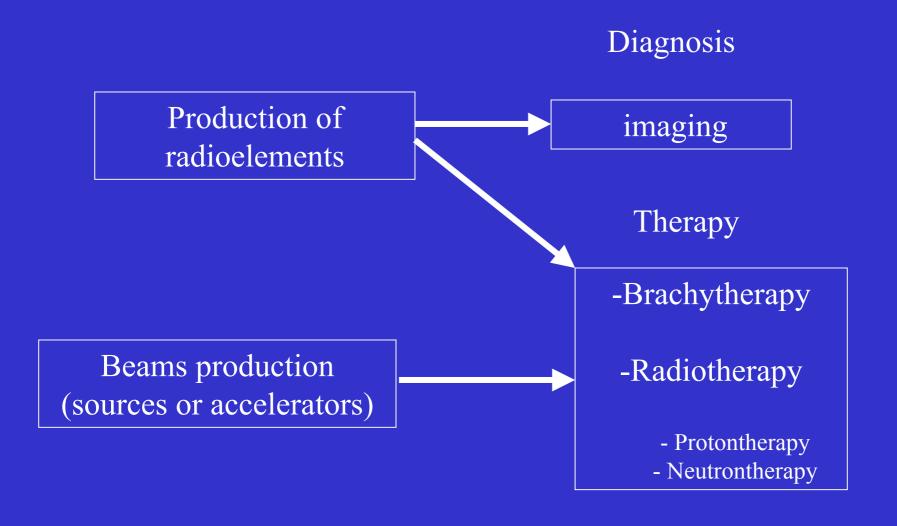
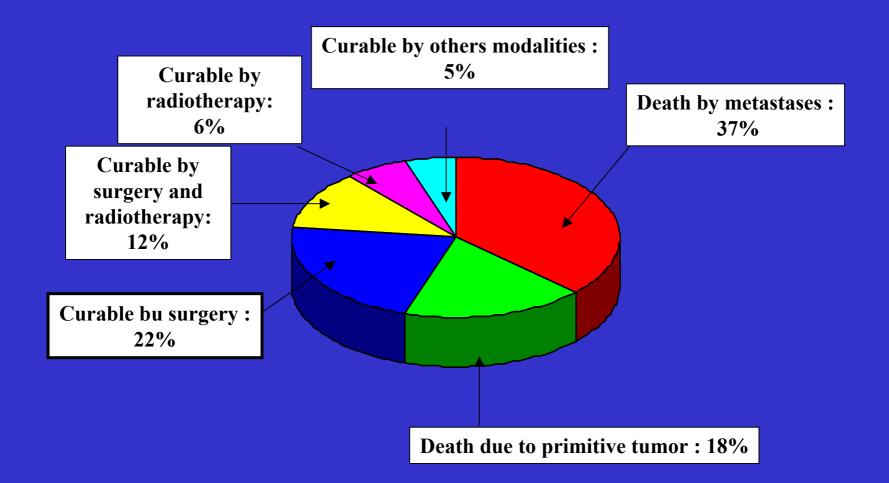


Accelerator Reliability Workshop -ESRF- Grenoble – 4/02/2002

Accelerator Reliability in protontherapy Specificities of the medical applications

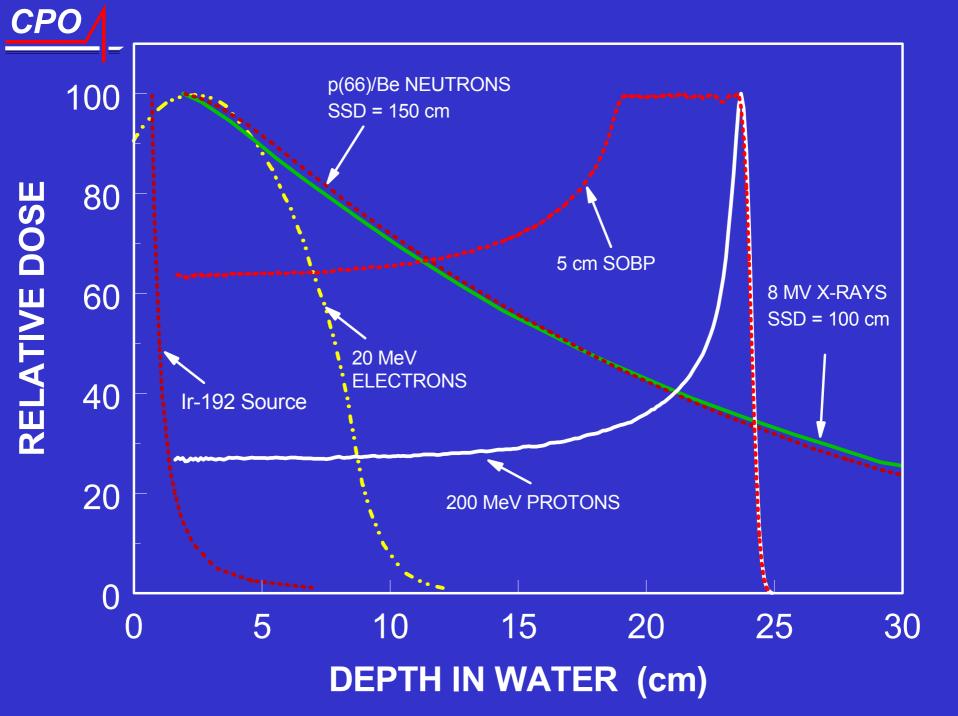

Samuel Meyroneinc – Centre de Protonthérapie d'Orsay


with the collaboration of:

- J. Briaud (CERI/CNRS /Orléans)
- L. Bély (Institut Gustave Roussy / Villejuif)
 - J-Y Kristner (Institut Curie /Paris)

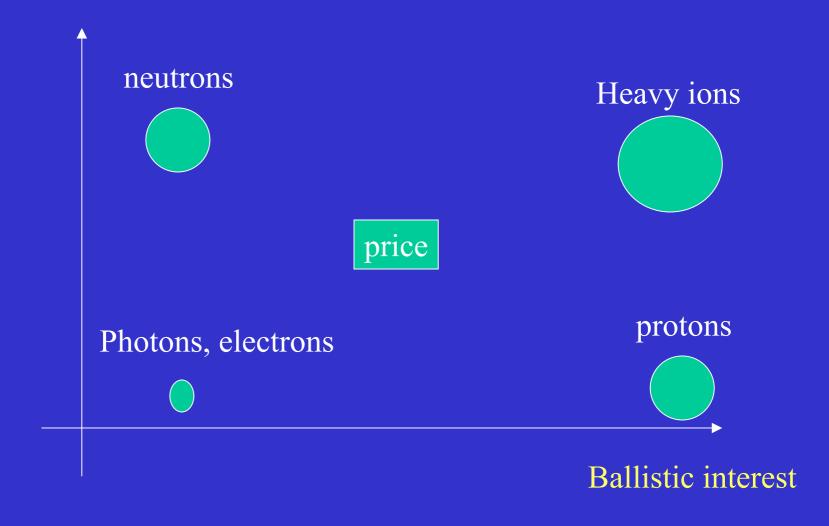
Accelerators in medicine

Role of the different treatments against solid tumours



Basis of radiotherapy

1. Multi-porting


2. Fractionation

Biological interest

Conventional radiotherapy (photons, electrons)

Roentgen

- experimental stage *Tubes*

- Clinical trials 1940

Cobalt source

- Industrial development 1960

Linear accelerators

<u>1970</u>

-Medical service, economical entity <u>2000</u>

30 % of oncology

+ 5000 accelerators

Protontherapy Neutrontherapy Hadrontherapy

« experiments » on nuclear physics machines

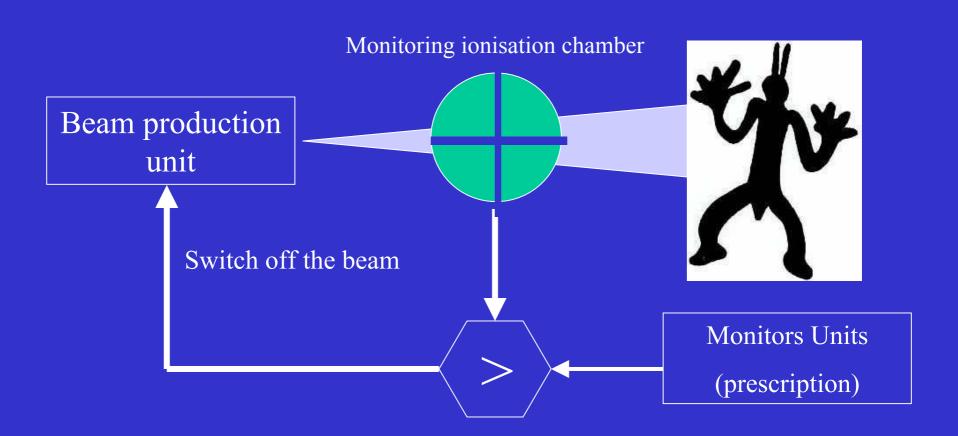
4 hospital-based facilities

30 0000 patients treated (less than 0,1 % of the overall)

Particularities due to the radiotherapy application (1)

- Overall time of treatment for a patient: 32 x 2 Gy (WE excluded), about **2 months**
 - ⇒ Long maintenances very disturbing for the medical planning
- Beam time during a day
 - beam quality control (beam, accessories) 15 min 1 hour (p)
 - 1 minute per treatment
 So beam is used only 10 % of the time

⇒ Short breakdowns manageable


Criticity of breakdowns in a radiotherapy facility

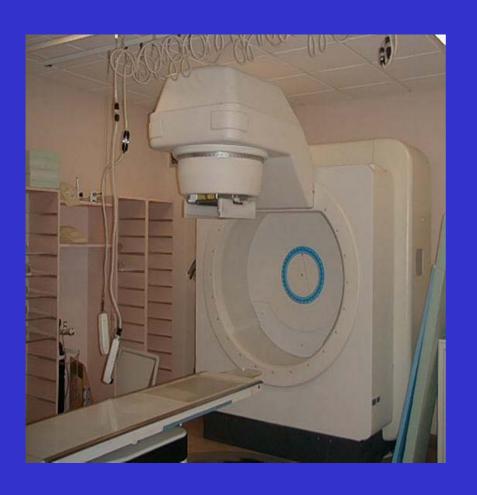
Particularities due to the radiotherapy application (2)

- Safety of treatment
 - certification (IEC801.2 or specific CE)
 - The most important point: the dose monitoring control

CPO/

Particularities due to the radiotherapy application (3)

The phsicians point of vue:


« maintenance as transparent as possible »

In the conventionnal radiotherapy world

Reported from:

- L. Bély (Institut Gustave Roussy / Villejuif)
- J-Y Kristner (Institut curie /Paris)

Photons

breast-ORL:4-6 MV

lung:10-15 MV

body:18-25 MV

Electrons superficial tumors 6-24 MeV

A modern radiotherapy machine

gantry

Beamline Target

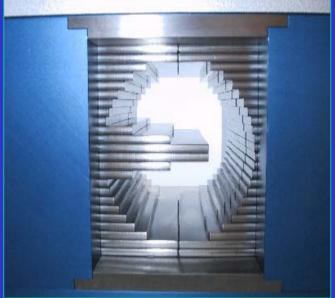
The multileaf collimator

*

Source (diod or triod)

Accelerating device (3Ghz)
Klystron or magnetron

The portal imaging


Ethernet connexion

Software: Record & verifier Patient database

Intensity Modulated Radiotherapy (IMRT)

Dynamic MultiLeaf Collimator (DMLC)

How do they manage reliability

- Historically: high level of subcontracting
 - no powerman inside hospital
 - required certification (CE)
- Importance of the call for bid
 - Technology choice
 - Company choice (only four competitive!)
 - maintenance contract negotiation (spare parts, minimum rate of availability)

How do they manage reliability

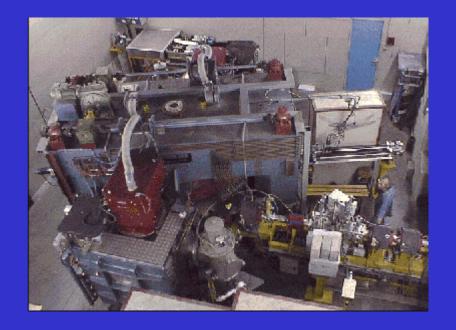
• before: tendency for full assistance

- new tendency: the shared maintenance
 - Hospital people are trained and "certified" by the company
 - Companies incite hospital to have a full stock of spare parts
 - hot line (no more telemaintenance)

80% of breakdowns are managed by hospital technicians

How do they manage reliability

- maintenance figures
 - Maintenance contract: 5% (of 2,5 M€/machine)
 - Preventive: 3 hours weekly, 2-4 full days yearly
 - the critical parts: vacuum, Multileaf Collimator, portal imaging, software
- how do they manage breakdowns
 - shift the treatment, reprogramming patient on an other machine
 - beam quality control by medical physicist
 - home made logbook and database


Their general feeling about reliability

- they are company dependent
- with IMRT: no place for degraded modes
- RTT and reliability are difficult to conciliate

Neutrontherapy CERI/ CNRS- Orléans

- Cyclotron built by THOMSON in 1974
- Variable energy: protons deutons- alphas-hélions (0-50 MeV)
- Neutrontherapy: 35% of the activity (600h/an)
- 2000 patients treated since 1985 (prostate, sarcoma, head and neck)
- Project for BNCT (Boron Neutron Capture Therapy)

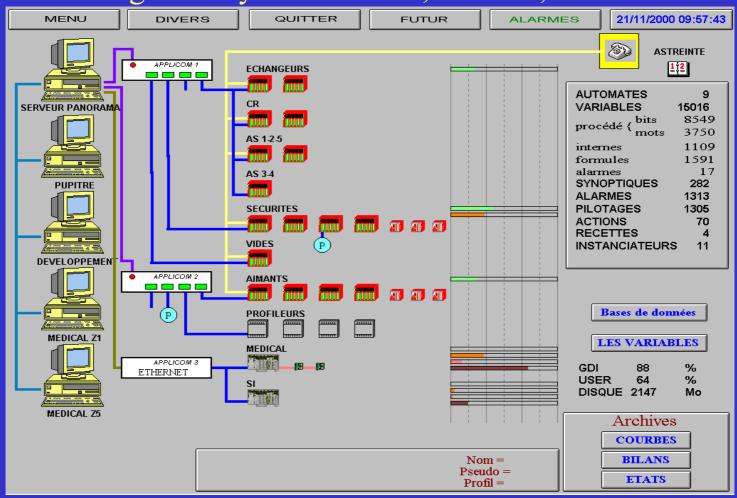
Protontherapy

Le Centre de Protonthérapie d'Orsay

- Synchro-cyclotron
 Philips 1956
 IPN/CNRS 1975
- 200 MeV protons
- Fully dedicated to medical application since 1990
- 2500 patients treated since 1991
- Uveal melanoma, chordoma, chondrosarcoma, head and neck
- Gantry project (collaboration with IPN)

How do we manage reliability (for old nuclear machines now devoted to medical)

1. The situation


- a lonely specific machine (no scaling effect)
- an old machine
- a complex experimental machine (Research design)

2. Actions

- + Good knowledge of behaviour
- + robust technology
- + a good know-how community (internal, IPN, campus)
- Basic preventive maintenance
- automatization
- If possible renovation (and if possible simplification)
- « task force » for curative maintenance

PLC network at CPO: a good way to command, monitor, store

- « clever » storage
- new level of sensitivity

One critical aspect at CPO: learning without doing

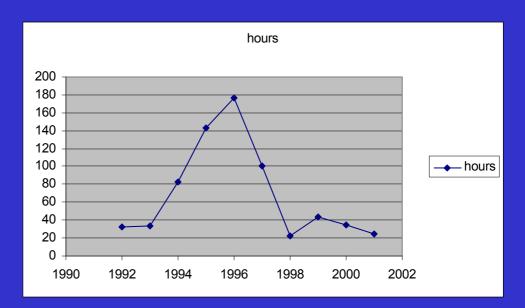
• The medical request: less maintenance time as possible

• Time needed to experiment, learn and prepare spare parts for specific systems

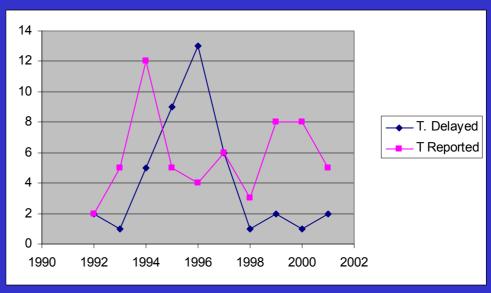
It works: don't do anything

Ex: the rotative condensator -HF (implementation of ceramic bearings 02/2002)

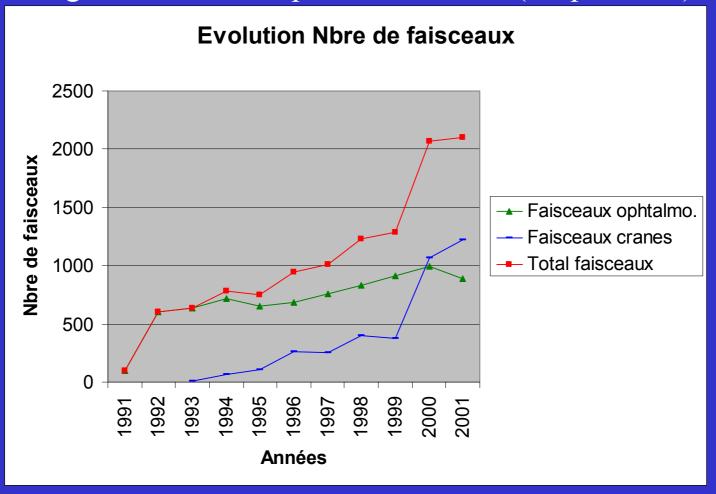
> also specific: HF systems, ion source, electromagnetic channel


The medical specificity (CERI and CPO)

- Redundancy and spare parts, as much as possible
- Safety: tripping margins for most of the parameters, doubling the « beam off » signals
- « task force » in case of failure
- Degraded mode to reach the end of the day
- vaccum constant times criticals
- Quality control of the beam after significant failures (by medical physicists)
- Close relation with the medical staff (anticipated maintenance, management of the planning)


Look at all the details in the medicalusers.doc file

Hours of breakdowns



Treatments delayed or reported

CPO figures:
great demand for patient treatment (keep it alive)

Congratulations to the HCL/Harvard (Boston) team who has kept very reliable their synchrocyclotron since ...1946!

Reliability: what should be a good organization for future accelerator (proton/hadrontherapy)

Projects proposed

INSTITUTION	PLACE	TYPE	1 ST	COMMENTS
INFN-LNS, Catania	Italy	р	P003	70 MeV; 1 room, fixed horiz. beam
NPTC (Harvard)	MA USA	р	2001	at MGH; 230 MeV cyclotron; 2 gantries + 2 horiz
Hyogo	Japan	p, ion	2001	2 gantries; 2 horiz; 1 vert; 1 45 deg; nearing completion
NAC, Faure	South Africa	p	2001	new treatment room with beam line 30° off vertical.
Tsukuba	Japan	p	2001	270 MeV;2 gantries;2 fixed; construction complete
Wakasa Bay	Japan		2002	multipurpose accelerator; building completed mid 1998
Bratislava	Slovakia	p, ion	2003	72 MeV cyclotron; p; ions; +BNCT, isot prod.
IMP, Lanzhou	PR China	C-Ar ion	2003	C-ion from 100MeV/u at HIRFL expand to 900 MeV/u at
Shizuoka Cancer Center	Japan		2003	CSR; clin. treat; biol. research; no gantry; shifted patients synchrotron 230? MeV; 2 gantries; 1 horiz; funded.
Rinecker, Munich	Germany	р	2003	4 gantries, 1 fixed beam, 230 MeV, scanning beams.
CGMH, Northern Taiwan	Taiwan	p	2001?	250MeV synchrotron/230MeV cyclotron;3 gantry,1 fixed
Erlangen	Germany	p	2002?	4 treatment rooms, some with gantries.
CNAO, Milan & Pavia	Italy	p, ion	2004?	synchrotron; 2 gantry;1 fixed beam rooms;1 exp. room
Heidelberg	Germany	p, ion	2005?	
AUSTRON	Austria	p, ion	?	2p gantry;1 ion gantry;1 fixed p;1 fixed ion;1 exp room
Beijing	China	p	?	250 MeV synchrotron.
Central Italy	Italy	p	?	cyclotron; 1 gantry; 1 fixed
Clatterbridge	England	p	?	upgrade using booster linear accelerator to 200 MeV?
TOP project ISS Rome	Italy	p	?	70 MeV linac; expand to 200 MeV?
3 projects in Moscow	Russia	p	?	including 320 MeV; compact, probably no gantry
Krakow	Poland	p	?	60 MeV proton beam.
Proton Development N.A. Inc.	IL USA	p	?	300 MeV protons; therapy & lithography
PTCA, IBA	USA	p	?	Several systems throughout the USA

Reliability: what should be a good organization for future accelerators (proton/hadrontherapy)

No more experimental technology

Not yet established market and technology

- Clinical orientation (routine or experimentation)
- « Quality » of the project management
- Budget, skills, certification and also ...

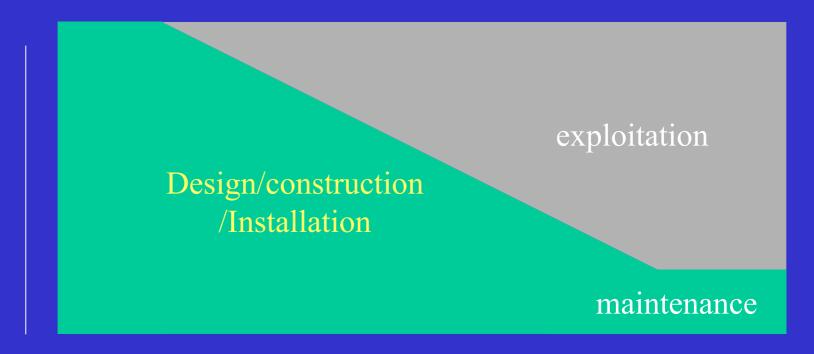
⇒ Transition beetween Design/Construction and exploitation

Knowledge management - degree of innovation

Best transition (the medical point of vue)

Design/construction /Installation

Exploitation


Sub-contracted maintenance (lightest)

Call for bid

acceptance tests

Best transition (the technical point of vue)

Fixed specifications

1st example – Harper Hospital- Detroit Superconducting cyclotron for neutron therapy (reported from R. Maughan)

Design & construction

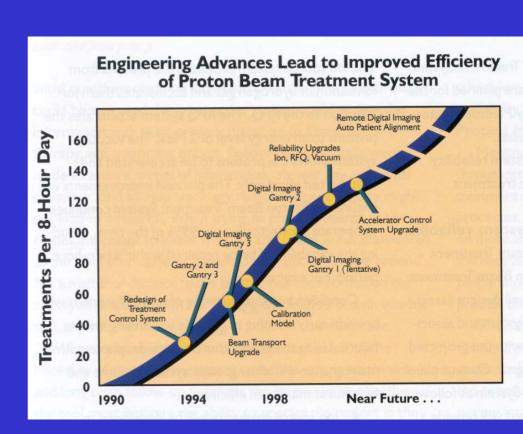
- collaboration with M.S.U.
- small company (Medcyc) created to assist hospital

Exploitation

-1992: first patient treated

- 2000: 200 patient /year

- Information: they need to keep ressources in the assistant company (powerman, \$) in order to keep reliability


2nd example – Loma linda University Medical Center Synchrotron for proton therapy

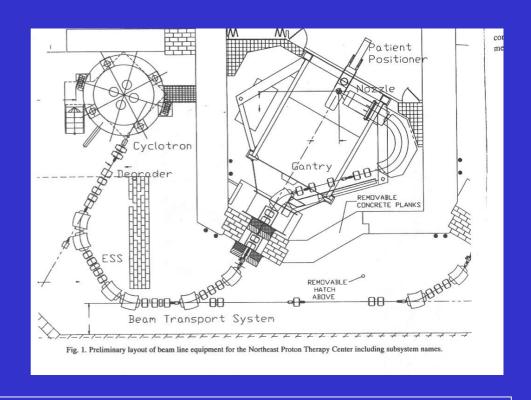
Design & construction

- Loma Linda University Medical Center specifications
- Fermilab construction
- Berkeley & Harvard know-how

Exploitation

- 1990: first patient treated
- 1993: private society in charge of R&D (OPTIVUS)
- 2001: « 100 patients per day »

Information: many technical upgrades


3rd example: The Northeast ProtonTherapy Center – Boston (hospital-based)

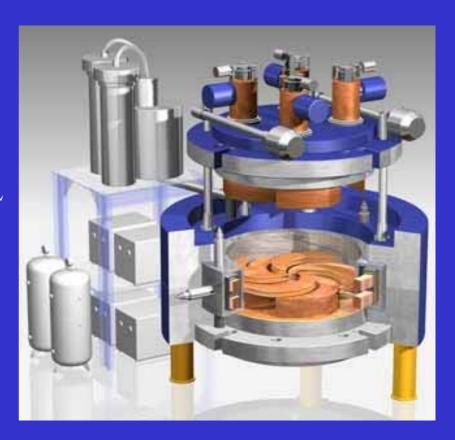
Design & construction

- Massachussets General Hospital specifications
- following the Harvard-HCL experience
- IBA design/installation

Exploitation

- 2001: first patient treated

Clinical application has driven the design and the implementation "fight against the NIH (not inventing here) syndrome"


4 th example –Proscan - PSI-CH Superconducting cyclotron for proton therapy

Design & construction

- following the PSI experimentation
- medical community specifications
- innovating accelerator bought to ACCEL
- own R&D team +PSI support

Exploitation

- 1st patient planned in 2005

« It's an experimentation » (learning by doing)

How would be your dream machine?

My dream machine would be without breakdowns ... without maintenance ... without me!

I hate this machine!

Thanks to

- The CPO team
- -J. Briaud (CERI/CNRS /Orléans)
- L. Bély (Institut Gustave Roussy / Villejuif)
- J-Y Kristner (Institut Curie /Paris)
- R. Maughan (Unniversity of Pennsylvania medical center)

ESRF

References

Proton Beam therapy: reliability of the synchrocyclotron at the Harvard cyclotron Laboratory – JM sisterson et al – Phys Med. Biol, 1991, Vol 36, n°2 285-290

The technology of hadrontherapy: the context within which technical choices are made – Michael Goitein – Advances in hadrontherapy -1997 – U. Amaldi, B. Larsson and Yves Lemoigne Editors

Status report for the harper hospital superconducting cyclotron neutron facility – R.L. Maughan –Cyclotrons and their applications 2001 – 16th edition