

Accelerator Systems RAM Analysis

George W. Dodson Accelerator Systems Division Operations Manager

February 4-6, 2002

- RAM Calculation of the SNS
 - Methodology
 - Assumptions
 - Results
- Experience at other modern accelerators (JLab, APS)
- SNS reliability goals and approach to tracking reliability data
- Projections for increased reliability

Accelerator Availability

- SPALLATION NEUTRON SOURCE
- Neutron scientists desire a 90% steady state availability
 - Travel, many are small groups with small travel budgets
 - Targets, time sensitive materials
- A top-down apportionment sets reliability goals for subsystems

• A bottom-up analysis

RAMI

- Reliability
 - System reliability, steady state or R(t) Time dependent examples include the "bathtub curve"
- Availability
 - Availability of systems until the next maintenance period
- Maintainability
 - Ability to diagnose and repair faults
 - Ability and knowledge to schedule and perform preventative maintenance before systems fail for systems that show no prefailure behavior
- Inspectability
 - Ability to PREDICT failure by periodic inspection and do PM to prevent failure

Reliability/Availability Calculation

- Calculated using Markov chains
 - Code obtained from APT,
- Steady state code (after infant mortality curve)
- Mean Time between failures
 - Manufacturer's data, Industrial database, Laboratory experience
- Mean time to repair
 - Engineering estimate, Laboratory experience
- Spares and Repair
 - Type (hot, cold)
 - Replacement (on line, off line)
 - Repair (on line, off line, on line for first and off line for second)

RAM Spreadsheet Example

S y st m	S u bs ys te m	A ss e Equipment/Failure Mode bl y	Failure Rate (1/h x 10 ⁻⁶)	Failure Rate Source	MTBF (h)	Percent of Anticip ated Failures	Effective MTBF for Unanticipated Failures (h)	Effective Failure Rate (1/h x 10 ⁻⁶)
		RCCS						
		Pump	40.00	Bernardin/Dortwegt	25000	75	100000.0	10.00
		Variable Frequency Drive	20.00	Bernardin/Dortwegt	50000	0	50000.0	20.00
		Control Valve	0.30	Bernardin/Brown (7/9/01)	250000	0	250000.0	4.00
		Piping Leak	3.00	K. Kern (5/18/99)	333333	0	333333.3	3.00
		Constant Flow Valve	1.00	Bernardin/Dortwegt	1000000	0	1000000.0	1.00
		Temperature/Pressure Sensor	30.00	Bernardin/Brown (7/9/01)	33333	0	33333.3	30.00
		Hose Leak	1.80	K. Kern (5/18/99)	555556	0	555555.6	1.80
		RCCS					25125.5	39.80
		Transmitter (Titan SNS1) 402.5 and 805 MHz	124.00	Maxwell	8065	0	8064.5	124.00
		Interface/control	12.95	Titan FDR	77220	0	77220.1	12.95
		AC distrubution Chassis	12.87	Titan FDR	77700	0	77700.1	12.87
		HV Enclosure	8.71	Titan FDR	114811	0	114810.6	8.71
	Magnet, Filament, Amp, Ion pump Supply		39.73	Titan FDR	25170	0	25169.9	39.73
	PPS Chassis		28.50	Titan FDR	35088	0	35087.7	28.50
	Water cooling		18.95	Titan FDR	52770	0	52770.4	18.95
	Titan SNS1 Transmitter Total		121.73				8214.7	121.73

Accelerator Systems Division

RAM Spreadsheet Example continued

Accelerator Systems Division

Accelerator Systems Initial RAM using an Industrial Database

System	Subsystem	MTBF(h)	Failure Rate	Mean	Est. Annual	Steady State
			(1/h x 10**6)	Downtime	Repair Time	Availability
LINAC						
	DTL	629.0	1598.9	11.2	448.73	98.25%
	CCL	575.3	1738.2	10.6	514.03	98.27%
	Med. Beta SCL	469.5	2130.1	5.4	298.3	97.35%
	Hi. Beta SCL	341.3	2930.2	5.4	325.4	96.29%
	Crypolant	685.0	684.9	2.8	63.4	99.59%
	HEBT RF	3007.3	332.5	7.2	98.75	99.76%
Linac Total		95.6	10462.5	6.8	1748.8	89.92%
Linac RF		104.0	9612.3	5.4	988.4	95.04%

Note: This does not include the Front End

2000-0xxxx/vlb

Accelerator Systems Initial RAM using an Industrial Database

System	Subsystem	MTBF(h)	Failure Rate	Mean	Est. Annual	Steady State
			(1/h x 10**6)	Downtime	Repair Time	Availability
Magnets	Magnets	2317.2	431.6	10.1	67.43	99.56%
	Power Supplies	252.2	3965	2.0	122.3	99.12%
	PS Controllers	133.0	7520	2.0	183.7	98.82%
HEBT-Ring-RTBT Vacuum		702.4	1423.7	12.0	581.4	98.32%
Ring Systems						
	Ring RF System	1544.0	2550	8.0	1265	94.10%
	Extraction Kicke	12500.0	155	2.0	347	97.78%
	Injection Foil Dr	2000.0	500	8.0	327	99.40%
	Collimators	83000.0	1.2	100.0	13	99.92%
Controls						
	EPICS	26800.0	207.8	2.0	415.5	94.78%
	Timing System	350.0	2.27	2.0	5.34	99.93%
	PPS	8310.0	64.42	2.0	128.8	98.35%
	MPS	2000.0	15.5	2.0		99.60%
	Total	37460.0	290.4	2.0	580.8	92.78%
Accelerator Systems Total						73.11%

Accelerator Systems Division

APS Unavailability

Accelerator Systems Division

Comparison of Industrial and Accelerator Databases

Industrial Database	
Magnetics Total	97.53%
Controls Total	92.78%
Accelerator Database using JLAB and APS	
Magnetics Total	99.78%
Controls Total	99.22%

Revised RAMI Summary

System	Subsystem	Initial Analysis	Revised Analysis	Justification
		Availability	Availability	
LINAC				
	DTL	98.25%	98.25%	
	CCL	98.27%	98.27%	
	Med. Beta SCL	97.35%	99.81%	one cavity off line
	Hi. Beta SCL	96.29%	99.53%	one cavity off line
	Crypolant	99.59%	99.73%	
	HEBT RF	99.76%	99.76%	
Linac To	tal	89.92%	95.43%	
Magnetic	S			
	Magnets	99.56%		
	Power Supplies	99.12%		
	PS Controllers	98.82%		
	Total	97.53%	99.78%	APS-JLAB Scaling
Ring Sys	stems			
	Ring RF System	94.10%	99.80%	one cavity off line
	Extraction Kickers	97.78%	99.70%	one module off line
	Injection Foil Drive	99.40%	99.40%	
	Collimators	99.92%	99.92%	
	Total	91.38%	98.82%	
HEBT-Ri	ng-RTBT Vacuum	98.32%	98.32%	
Controls				
	EPICS	94.78%		
	Timing System	99.93%		
	PPS	98.35%		
	MPS	99.60%		
Controls	Total	92.78%	99.22%	APS-JLAB Scaling
Accelera	tor Systems Total	73,11%	91,79%	

Accelerator Systems Division

- Add redundancy and fault tolerance to the systems, e.g.
 - Front End Modify Front End for two ion sources
 - RF Systems Add another hot standby transmitter
 - Superconducting LINAC Add more cryomodules
- Purchase Power supplies rated for higher power
- Operate beam at a lower average power

Paths to High Availability: Comments from Engineers

- Purchase over-rated power supplies
 - MTBF increases as (I _{operating}/I_{rating})
 - Using the APS-Jlab scaling, power supplies are already above 99.8%,
- Cooling get a factor of 2 in MTBF for 10°C in cooling for electronics
 - Air cooling in power supply rooms
 - Water cooling parallel cooling not series
- Use 1/2 or 2/3 model (NLC talk P. Bellomo)
- Use MIL-HDBK- 217 parts. (MTBF goes to ~140,000h)

Paths to High Availability: Comments from Engineers

- Operate beam at a lower average power
 - 60 Hz at half peak current
 - No effect on DC systems
 - AC systems run at same PRF, some more lightly loaded slight increase in MTBF – but, run twice as long for the same neutron flux
 - 30 Hz at full peak current
 - Users want 60 Hz operation
 - No effect on DC Systems
 - AC systems run at half the PRF but, run twice as long for the same neutron flux
- Operate at reduced power while repairs are underway (Klystron, Kickers, Ring RF)

Approaches to High Availability: Operating Schedule

- Availability is not steady state reliability.
- Schedule one shift of PM and one, plus recovery shifts per week. These do not count against availability
- Tactical approach: "tune around it until the PM day" <u>not</u> "run until it breaks".

- Initially use reliability calculation to predict MTBF of systems and components.
- Schedule <u>proactive PM</u> to replace components at an agreed percent of the anticipated lifetime.
 - Increases MTBF, does not act as "hot spares"
- Use "lessons learned" from actual failure rate to validate the real MTBF and MTTR

Use Operational Experience

- Track reliability/availability/maintenance with off-the-shelf MIS software
- ERAMS
 - integrated into SNS Oracle database
 - Cradle-to-grave equipment tracking using barcode
 - Direct access to: Installation data, maintenance history, fault history, vendor travelers, partner laboratory travelers, RATS testing results
 - Fault reporting
 - Work planning
 - Spares inventory
- Identify the systems that contribute the most to downtime

Reliability Improvement Program

- Identify the largest contributor to downtime
- Upgrades to the hardware specifications
 - Purchase overrated power supplies
- Upgrades are possible to hardware as supplied
 - Suggest hardware modifications based on operational experience
- Upgrades are possible to hardware as it is operated
 - Cooling
 - PM

Conclusion

- Presented reliability goals, a calculation with an industrial database and a comparison to recent accelerator experience.
- Described how a proactive PM program utilizing a MIS system for tracking the sources of beam unavailability will be used to increase availability.
- Showed a reliability improvement program focusing on system fault tolerance, redundancy and operating conditions.