ADS based on Linear Accelerators

Alex C. Mueller, CNRS-IN2P3, IPN Orsay, Accelerator Division

- Introduction
- Main Specifications
- A Solution as Baseline for Evaluation
- Specific Aspects

The TWG European Roadmap towards Nuclear Waste Incineration by ADS

Table 2.3. Time schedule and milestones for the development of ADS technology in Europe																								
Year 2000+ Phase-1 XAD S/XADT	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	25	30	40	50
Basic R&D																								
Choices of Options Preliminary design																								
Design + Licensing Construction																								
Low power testing Full power testing																								
XADS Operation XADT Conversion																								
XADT Operation Phase-2																								
Prototype ADT Basic R&D																								
Constr., Operation Phase-3																								
Industr. Application																								

Alex C. Mueller, 4 February 2002, ESRF Grenoble - 2 -

XADS (technology demonstrator) Roadmap as proposed by the TWG

Year 2000 +	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
ACCELERATOR															
- R&D															
- Design															
- Construction															
XADS Site and Infrastructures Preparation					(1)										
SPALLATION MODULE															
Prototypical Target - connection to accelerator															
Operation of accelerator & target combined										(2)					
SUBCRITICAL SYSTEM															
- Choice of Options (coolant and fuel)		(3)													
- Detailed Design and Licensing															
- Construction															
- Commissioning and operations															
(1) Nuclear island foundations and infrastructure	1) Nuclear island foundations and infrastructures for accelerator complex														
(2) Refer to figure 3.1 for plant configuration															
(3) PDS-XADS activities within 5 th FP															

Projects on ADvanced Options for Partitioning and Transmutation (ADOPT)

PDS - XADS Work organisation

Alex C. Mueller, 4 February 2002, ESRF Grenoble - 4 -

PDS-XADS WP1 (Global Coherency) preliminary requirements (status 01/2002)

	Reference XADS requirements								
Acce	lerator requirements								
Max. Beam Intensity	5 to 10 mA								
Proton Energy	<u>600 to 800 MeV</u>								
Beam focalisation stability	<u>+</u> 5 to 10 %								
Intensity Beam stability	<u>+</u> 2 to 4 %								
Beam entry	To be defined								
Beam trip number	Less than 10 per year								
Beam type	CW, Pulsed								
Ta	irget requirements								
Target Life time	1 year of operation								
Target Material	LBE								
Target Diameter	30 to 40 cm								
Target Power	2 to 5 MW								
Sub cri	tical core requirements								
Power	60 to 100 MWTh								
Min. Core volume	500 liters								
Max. Core volume	1500 liters								
Vol. Power	80 à 200 W/cm3								
Pu	Less than 30 %								
Δρ/ρ BU	between -10 and –15 pcm/efpd								
Cycle length	Larger than 100 efpd								
DPA max	0.15 dpa/efpd								
Max Flux	3 10 ¹⁵ n cm ⁻³ s ⁻¹								
H.N. Inventory	≈ 1000 / 2500 kg								

- 600 800 MeV
- 10 mA
- less than 10 trips per year
- stability +/- 2%
- CW (with pulsing capability)

Arguments for LINAC-based ADS from the roadmap

• The "Front end"

- impressive R&D efforts (LEDA, IPHI, TRASCO, SNS, ISIS, ESS)
- sophisticated beam dynamics simulations
- first experimental demonstration by LEDA 7 MeV, 100mA
- the halo problem and hence activation are under control
- designs integrate reliability aspects from the intitial phase on (important safety margins), specific tests and improvements (e.g. SILHI)

• The high-energy linac

- beam losses below 1nA/m for hands-on maintenance
- impressive R&D efforts for SC cavities
 - important potential for cost reduction réduction/decrease of accelerator length and/or reliability (franco-italien strategy)
- decision SC/nSC at the 2MW frontier (cf. SNS)

Linac "design philosophy" aspects

(Transparency G. Lawrence 1999 HPPA-Workshop, Aix en Provence)

8	Cryomodule length	9.7 m
10.0 MV/m	Cavity Q _o	3 x 10 ⁹
11.1 MeV	RF loss per cavity	99
390-1000 MeV	Operating temperature	2.1K
1.28 m	Number of klystrons	16
	8 10.0 MV/m 11.1 MeV 390-1000 MeV 1.28 m	8Cryomodule length10.0 MV/mCavity Qo11.1 MeVRF loss per cavity390-1000 MeVOperating temperature1.28 mNumber of klystrons

Alex C. Mueller, 4 February 2002, ESRF Grenoble - 8 -

Linac "design philosophy" aspects

(Transparency G. Lawrence 1999 HPPA-Workshop, Aix en Provence)

Alex C. Mueller, 4 February 2002, ESRF Grenoble - 9 -

The European projects: EURISOL & XADS

A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration

http://itumagill.fzk.de/ADS

Radioactive Nuclear Beam Facility

http://www.ganil.fr/eurisol

<u>« eXperimental Accelerator Driven System »</u>

⇒ Development of ADS for Nuclear Waste Transmutation

Partners: Austria, Belgium, Finland, France, Germany, Italy, Portugal, Spain, Sweden

« EURopean Isotope Separation On-Line »

\Rightarrow Design study of the next-generation European ISOL RNB facility

« Driver Accelerator Group » = CEA Saclay, CERN, GANIL, INFN LNL, IPN Orsay

BEAM		Nominal current	Maximum Energy	Beam structure		
PROTOURE	EURISOL	5 mA (& 0.5 mA)	1 GeV <i>(→ 2 GeV)</i>	CW		
Res	XADS	20 mA <i>(→ 40</i>	600 MeV <i>(→</i> 1	CW		
		mA)	GeV)			

Alex C. Mueller, 4 February 2002, ESRF Grenoble

Lay-out of a High Power Proton Linac à la EURISOL / XADS

Alex C. Mueller, 4 February 2002, ESRF Grenoble

- 11 -

A superconducting intermediate section ?

<u>The « very low β SC cavity » solution compared with a DTL solution</u> (5 – 85 MeV, 20 mA CW)

- 1. Same investment cost: 20 to 25 M€ not including infrastructures Same length: 60 to 80 metres
- 2. Better efficiency: 8 MW AC = 3 M€/year are saved Larger beam apertures (×3): safety ← no structure activation Independent RF structures: reliability ← low power sources + flexibility (power adjustments, heavy ion capability)
- 3. Beam matching after the RFQ (5 MeV) is difficult \leftarrow long focusing length

Design of a SC linac from 12 MeV to 1 GeV (I=20 mA CW)

Choice of the accelerating structures

Main goals:

- Maximize the accelerating fields ⇔ minimize the linac length
- Keep some safety margins on peak surface fields: Bpk<50mT, Epk<25MV/m
- 3. Minimize the RF losses
- 4. Minimize the number of different structures
- 5. Provide acceptable beam dynamics
- 6. Check the mechanical feasability of the structures

2-gaps spoke cavities β=0.18 & β=0.35 @ 352.2 MHz, 2K (or 4K)

5-cells elliptical cavities β=0.47, β=0.65 & β=0.85 @ 704.4 MHz, 2K

Alex C. Mueller, 4 February 2002, ESRF Grenoble

Cavity design & optimisation

Main goals:

- 1. Minimize Epk/Eacc and Bpk/Eacc
- 2. Minimize the RF losses on the cavity walls
- 3. Keep large bore radius
- 4. Provide a good mechanical stability

Elliptical cavity, 704.4 MHz, β =0.65

Spoke cavity, 352.2 MHz, β =0.35

Simulations with:

- RF calculations: Superfish, BuildCav, Mafia
- Mechanical calculations: Castem, Ansys, Acord

Beam dynamics studies

Main goal:

Provide a good longitudinal and transverse beam stability: $\sigma_0 < 90^\circ$ /lattice, σ_0/L as continuous as possible, $\sigma_{0T} \neq \sigma_{0L}$

Choices:

- 1. Focusing by quadrupole doublets
- 2. Smooth growth of the focusing lattice (1m to 8.1m)
- 3. Synchronous phase -30° & -25°
- 4. Beam matching at each transition

Simulations with GenLin, TraceWin, Partran, codes developed at CEA Saclay by N.Pichoff & D.Uriot

Trace_Win - CEA/DSM/DAPNIA/SEA X (mm) 50 100 150 200 250 300 Y (mm) 100 300 50 150 200 250 Phase-Energy (deg(352.2 MHz)-MeV) X-Y (mm-mm)

-2

0 2

Xmax = 5.050 mm Ymax = 3.082 mm

-4

-1

0

Wo=1010.499 MeV Phase=0.042 deg

Alex C. Mueller, 4 February 2002, ESRF Grenoble - 15 -

12 MeV – 1 GeV SC linac characteristics

		Spoke 2- gaps	Spoke 2- gaps	5-cells β=0.47	5-cells β=0.65	5-cells β=0.85		
Energy (MeV)		₿ <u>₹</u> 9.28	₿ ⋶0.3 5	77 - 185	185 - 486	486 -		
Numbe	r of cav.	26	48	32	51	1910		
Gain/cav. (MeV)		0.35 à	0.45 à 1.4	1.4 à 4.2	3.2 à 6.8	7.1 à 10.3		
Cav./lattice		0.60 2	3	2	3	4		
L lattice (m)		1.0 à 1.9	2.7	4.1	5.65	8.1		
Length (m)		21.8	43.2	65.6	96.1	113.4		
Gradient		0.64	1.18	1.65	3.13	4.62		
(Me	V/m)							
	<u>TOTAL</u>	Beam	Beam power	AC power	Invest. cost	Elect. cost		
	350 metre	s 5 mA	5 MW	13.0 MW	110 M€	5.0 M€/y		
213 cavitie		es 20 mA	20 MW	42.5 MW	150 M€	16.5 M€/y		
						27%		

Alex C. Mueller, 4 February 2002, ESRF Grenoble - 1

Conclusion & Perspectives (1)

- 1. The use of **superconducting cavities** can be envisaged **from the injector** up to the high energy end, providing all the **advantages** inherent to superconductivity
- 2. A preliminary design of a 12 MeV 1 GeV SC linac has been achieved, showing the feasibility of such a solution
- 3. Work in progress: design of a 5 MeV 1 GeV SC linac, detailed comparative study between « warm » and « cold » options in the intermediate part, etc..
- 4. Active **R&D programs** on SC linacs are going on, especially in the European context (5th & 6th PCRD)

Conclusion & Perspectives (2)

R&D 700 MHz Cavities

Very good test results on prototypes since 1998

2002: Test of the first 5-cells cavity in CryHoLab (with He tank + tuning system + IOT 80 kW)

The linac base-line options for an XADS

- The injector section is an easy extrapolation from projects presently under construction in Europe
- The high-energy section uses structures that are within the present main-stream developments of low- β elliptical SCRF cavities

 The intermediate section will use, a priori, independently-phased SCRF cavities

Facts & recommendations (1) from the EURI SOL study

• The EURI SOL base-line driver accelerator, a 1 GeV, 5 MW CW proton facility, with a possible upgrade to 2 GeV, has <u>remarkable synergies</u> in components and R&D needs with other high-intensity projects. The proposed solution is thus in the mainstream of today's accelerator development.

• The <u>demonstration of the injector accelerator</u>, up to about 10 MeV, relies on existing projects like IPHI or the TRASCO injector. Therefore, it is important that full funding for these R&D projects is ensured.

• Two items have <u>high R&D priority</u>: (a) construction of complete prototype accelerator sections for low- β elliptical SCRF cavities; (b) development of prototypical spoke, quarter-wave and re-entrant cavities with associated auxiliary RF components, to be tested with beam from existing facilities.

Facts & recommendations (2) from the EURI SOL study

•The <u>funding for these identified R&D</u> needs for the EURISOL driver accelerator should be proposed, within the frame of the 6th PCRD, in a co-ordinated manner with other projects, where applicable.

•Assuming that it is possible to establish common R&D programmes with other projects, it should be investigated whether <u>common designs</u> could be adopted. Important cost saving can be anticipated from this action.

•Such a common and "synergistic" R&D programme should also provide the opportunity to investigate whether additional saving can be achieved by sharing the driver accelerator. From the technical point of view, pulsed driver accelerators provide a priori sufficient beam power for time-sharing the beam between two or even more users. But at present stage, it is too early to draw conclusions about the opportunities for such an approach.