Some aspects of the use of the Vibrating Wire Technique for a wiggler magnetic field measurement.

Alexander Temnykh Cornell University, USA

- 1. Introduction
- 2. Theory
- 3. Measurement Setup
- 4. Results
- 5. Conclusion

Introduction

- Conventional techniques used for wiggler/undulators field and field integral measurement:
 - Hall probe
 - Short searching coils
 - Long flipping coils
- Field measured along strait lines is different from field seen by particles moving along wiggling trajectory. The difference may cause serious problems for beam dynamics:
 - J. Safranek et. al., Nonlinear Dynamics in SPEAR Wigglers, Proc. of PAC 1999, New York, pp. 157-161.
 - D. Alesini et. al., Beam-Beam Experience at DAΦNE, Proc. of PAC 2001, to be published.
- Can we measure field along a wiggling path? Yes, we can if we use Vibrating Wire Technique.

Theory

 Beam trajectory and displacement of the taut wire with DC current in magnetic field are similar (a well known fact).

$$\frac{\partial^2 X}{\partial z^2} = \frac{q}{P} B(z); \quad T \frac{\partial^2 X}{\partial z^2} = -I_{dc} B(z)$$

$$X_{b} - \text{ beam trajectory}; \quad X_{w} - \text{ taut wire displacement};$$

$$q, P - \text{ particles charge and momentum}; \quad T, I_{dc} - \text{ the wire tension and DC current}$$

$$I_{dc} = -I_{dc} D_{c}$$

if
$$\frac{dc}{T} = -\frac{q}{P}$$
 the wire will imitate beam trajectory.

11/15/2001

A. Temnykh, IMMW 12, Oct. 1-4 2001, ESRF, Grenoble, France

Theory

• Vertical wiggler magnetic field: $B(z) \approx B_{W}(z) \sin(\frac{2\pi z}{d})$

• The wire wiggling:
$$X(z) \approx A_{W} \sin(\frac{2\pi z}{d})$$
 where $A_{W} = \frac{I - B}{T} (\frac{2\pi z}{d})^{2}$

Effect of the horizontal field appearance due to the wiggling (x=0)

$$B_{x}(x = 0, y, z) = B_{z}(y, z)X'(z) \approx B_{w}A_{w}(\frac{2\pi z}{d})^{2}\sin(\frac{2\pi z}{d})^{2}y$$
$$\delta I_{x}(x = 0, y) = \int B_{x}dz = \frac{B_{w}A_{w}L_{w}}{2}(\frac{2\pi z}{d})^{2}y; \quad \delta I_{y}(x = 0, y) = 0$$

A. Temnykh, IMMW 12, Oct. 1-4 2001, ESRF, Grenoble, France

11/15/2001

Theory

Effect of the wiggling on field components at z = 0

B (x) - vertical field variation across single pole $\delta I_{x} (x, y = 0) = 0;$ $\delta I_{y} (x, y = 0) = \frac{A L}{2} \frac{\partial B (x)}{\partial x} \xrightarrow{\text{Vertical (Hall)}}$

For experimental condition:

$$B_{p}(x)[G] = 7.8 \times 10^{3} - 6.53 \times 10^{-8} \cdot x^{6}[mm]$$

$$\frac{\delta I}{y}(x, y = 0)[Gm] = 3.56 \times 10^{-8} \cdot x^{5}[mm]$$

11/15/2001

A. Temnykh, IMMW 12, Oct. 1-4 2001, ESRF, Grenoble, France

5

Measurement Setup

- (1) 100 micron copper-beryllium wire 382.2 cm in length
- (2) G-line CHESS wiggler, Bmax=0.780T, d=12cm, L=3m
- (3) Tension mechanism
- (4) Horizontal and vertical wire position detectors

A. Temnykh, IMMW 12, Oct. 1-4 2001, ESRF, Grenoble, France

Results

 Wiggling amplitude calibration with optical means

♦ Fit:

 $A_{w}[mm] = (0.255 \pm 0.006) \cdot I_{dc}[A] / T[N]$

Model:

 Difference between horizontal field along z measured with (Aw=0.124mm) and without wiggling (Aw=0). 9 odd harmonics were used.

> Vertical position y= - 5, 0, 5 mm From model dBx ~ 0.8e-3Bmax 1[r.u.] ~ 4e-4 Bmax

11/15/2001

Results (theoretical prove)

If the function of field distribution along magnet is known, one can use only one wire vibrating mode to measure the field integral.

$$\delta B(z) = B_0 \sin(\frac{2\pi z}{d})^2; \qquad \delta I = \int_0^L \delta B(z) dz = \frac{B_0 L}{2}$$

Harmonic measured by vibrating wire :

$$H_{1} = \frac{2}{l} \int_{0}^{l} \delta B(z) \sin(\frac{\pi z}{d}) dz = B_{0} \frac{2}{\pi} \sin(\frac{\pi L}{2l})$$

The field integral will be :

$$\delta I = H_1 \frac{l}{2} \frac{\pi L}{2l} \sin^{-1} \left(\frac{\pi L}{2l}\right)$$

Effect from small shim placed in the middle of magnet and measured with long flipping coil was used for calibration.

11/15/2001

A. Temnykh, IMMW 12, Oct. 1-4 2001, ESRF, Grenoble, France

Results

Vertical / horizontal field integrals versus y, Aw = 0.060mm, Measurement

2001, ESRF, Grenoble, France

Results

- Vertical / horizontal field integrals versus x, Aw = 0.060mm,
 - Measurement

11/15/2001

A. Temnykh, IMMW 12, Oct. 1-4 2001, ESRF, Grenoble, France

10

Conclusion

- Vibrating Wire Technique was used to measure field distribution and field integrals along a wiggling path imitating beam trajectory.
- Obtained data is in excellent agreement with model calculation.
- The Vibrating Wire Technique has unique features which can be effectively exploited in the Insertion Devices magnetic field measurements.