A Strategy for Series Magnetic Measurements of the LHC Magnets

S.Sanfilippo, L.Bottura and L.Walckiers for the LHC-MTA group.

1. Introduction

LHC and magnets for the LHC Field quality errors

- **1. Tolerances for key beam parameters**
- 2. Target field quality for series production
- 3. Strategy for Series Measurements 3 levels of control series measurements plan at CERN
- 1. Equipment/Magnetic measurement system
- 2. Conclusions

Introduction

Basic layout of the LHC

Choices for the LHC

- Proton collider.

-Injection:450 GeV, collision 7 TeV.

-Superconducting magnet technology (1.9 K).

-Focusing Defocusing (FODO) lattice.

-High luminosity insertions.

Energy	TeV	7
Injection energy	TeV	0.45
Dipole field	Tesla	8.36
Number of dipole magnets		1232
Number of quadrupole magnets		430
Number of corrector magnets		about 8000
Luminosity	$cm^{-2}s^{-1}$	10^{34}
Coil aperture	mm	56
Distance between apertures	mm	194
Particles per bunch		1011
Number of bunches		2835

Some machine parameters.

Introduction

Each LHC arc= 23 cells

Magnet System: Bending + Focusing / Defocusing + Correctors Dipole Quadrupole MCS MCDO

LHC Main Dipoles (~1232)

۵

LHC Short Straight Section (MQ+correctors)~400 SSS

Parameter List of LHC Main Quadrupoles

		400	-
Integrated gradient		690	1
Nominal temperature		1.9	к. —
Nominal gradient		223	1/m
Margin on load line		19.7	%
Nominal Current		11870	А
Magnetic length		3.10	m
Beam separation distance ((cold)	194.0	mm
Inner coil aperture diamet	ez (waffi)	56	mm
Outer coils diameter		116.6	mm
Outer voke diameter		452	mm
Collar material		Stainless ste	el
Yoke material		Low carbon	steel
Yoke length including end	plates	3250	mm
Number of turns per coil (pole)	24	
Cable length per pole	• ·	160	m
Cable length per two-in-or	e quadrupole	1280	m
Cable width		15.10	mm
Cable thickness, bare		1.362/1.598	mm
Insulation thickness	azimuthal, compressed	0.11	mm
(all polyimide)	radial	0.13	mm
Number of strands		36	
Diameter of strand		0.825	mm
Cable twist pitch length		100	դոդո
Cu/SC ratio		1.9	
Number of filaments in str	ands	6500	
Filament diameter		6	цm
Filament twist pitch length	ı	25	mm
Self-inductance, one apert	ure	5.6	mΗ

Correctors

- Lattice :
 - MQTL
 - MQT
 - MQS
 - MQSX
 - MQSXA
 - MS
 - MSS
 - MO

- Orbit (H&V) :
 - MCB
 - MCBC
 - MCBR
 - MCBY
 - MSCB
 - MCBX
 - MCBXA

- Multipole :
 - MCD
 - MCO
 - MCS
 - MCOX
 - MCSX
 - MCTX
 - MCOSX
 - MCSSX

See talk by F.Patru for all the details

Correctors (cont)

Correctors (cont)

LHC insertion magnets

- MQM matching quadrupoles
- MQY quadrupoles
- Separation dipoles (BNL)
- MQXA, MQXB quadrupoles (KEK, FNAL)

Not discussed in this talk.

Dipoles and SSS to be measured.

Superconducting Magnet Tests Plant (SMTP) in SM18 - 12 test benches for cold tests at CERN.

- Dipoles and/or SSS units attached to one of 12 test stations.

- Test capacity : up to 60 magnet tests per month.
- Tests will focus on :
- quench performance
- magnet protection
- magnetic measurements
- acceptance of cryogenic, insulation vacuum, and electric integrity

Components critical for field quality

LHC DIPOLE : STANDARD CROSS-SECTION ALIGNMENT TARGET MAIN QUADRIPOLE BUS-BARS HEAT EXCHANGER PIPE SUPERINSULATION SUPERCONDUCTING COILS BEAM PIPE VACUUM VESSEL BEAM SCREEN AUXILIARY BUS-BARS SHRINKING CYLINDER / HE I-VESSEL THERMAL SHIELD (55 to 75K) NON-MAGNETIC COLLARS IRON YOKE (COLD MASS, 1.9K) **DIPOLE BUS-BARS** SUPPORT POST

- Coil characteristics
- Collars
 - -geometry
 - -magnetic properties
- Iron yoke and inserts
 - geometry
 - magnetic properties
 - -"two in one" configuration
 - Properties of the NbTi Rutherford cables.
 - magnetisation at 0.5 T controlled within 4.5 %.
 - minimum inter strand resistance of 20 μΩ.

Origins of the field errors

- **winding geometry** (warm and <u>cold</u>, lo-B & <u>hi-B</u>),
- **saturation** (cold, <u>hi-B</u>),
- errors related to the **diamagnetic behaviour of superconducting** strands and cables:
 - effect of the persistent currents,
 - ramp rate induced harmonic errors (eddy currents),
 - decay of the persistent currents at injection plateau and snap-back phenomena during the following ramp.

Multipole field expansion in the complex plane.

 2-D plane field in the current-free region of the magnet aperture

Beam requirements

LHC machine: Luminosity of 10³⁴ cm⁻² s⁻¹.

Effect of the field errors:

- unstable transverse particle motion (amplitude growth, larger beam size)
- aperture restrictions beam losses Reduced luminosity Quenches

Beam requirements for the field quality:

- maximize the Mechanical Aperture,
- maximize the Dynamical Aperture,
- beam parameters variations.

Beam requirements

Consequences on field quality (units)

multipole	systematic	uncertainty	random
b1	0.3	0.8	0.13
b2	0.55		
a2			0.8
b3	0.02		
a3		0.17	2.1
b4		0.07	0.49
b5	0.18		

For a series production :

Systematic = average value (gaussian distribution) Random = standard deviation σ (gaussian distribution) Uncertainty (in the average) = bias from the expected systematic value.

Beam requirements

Table 2 Alignment tolerance for the dipole CMA					
	Tolerance				
		systematic	random	Uncertainty	
			(1 o)	(1 σ)	
	х	0.14 mm	0.29 mm	0.47 mm	
MB	У	0.14 mm	0.42 mm	0.29 mm	
	roll	0.5 mrad	0.5 mrad	-	
	х	0.1 mm	0.34 mm	0.31 mm	
MSC y	0.1 mm	0.61 mm	0.19 mm		
	roll 1 mrad		1 mrad	1 mrad	
	х	31.9mm	1.9 mm	2.2 mm	
MOC	MOC y 20.		1.6 mm	1.9 mm	
	roll	1 mrad	1 mrad	1 mrad	
	х	0.4 mm	0.64 mm	1.3 mm	
MDC	У	1.1 mm	0.50 mm	1.7 mm	
	roll	1 mrad	1 mrad	1 mrad	

Table 3 Alignment tolerance for the SSS components					
		Toler	ance		
	-		systematic	random	
	Error			(1 σ)	
	orbit excursion	х	-	0.37 mm	
MQ	orbit excursion	У	-	0.37 mm	
	coupling	roll	0.3 mrad	1.0 mrad	
	tune/ß-beating	Х	0.1 mm	1.0 mm	
MS	coupling	У	0.1 mm	0.8 mm	
	chromatic.	roll	2.0 mrad	1.5 mrad	
	coupling				
	chromaticity/	х	0.16 mm	1.9 mm	
MO	DA				
	chromatic	У	0.1 mm	0.5 mm	
	coupling				
	(2,-	roll	1.0 mrad	1.5 mrad	
	2)resonance				
CB	coupling	roll	0.6 mrad	0.6 mrad	

(source: W.Scandale, LHC/MMS)

Tight tolerances on alignment.

Target field quality for series production (Dipoles)

Systematic	Uncertainty	Random
(max value)	(max value)	(r.m.s)
(units)	(units)	(units)
None	6.5	8.0
6.5 average	per arc cell	8.0
1.4	0.8	0.7 (injection)
		0.8 (collision 7 TeV)
	0.9	1.9 (injection)
		2.3 (end of ramp)
		1.6 (collision 7 TeV)
-10.7	Including bias	1.4 (injection)
(injection)	due to	1.8 (collision 7 TeV)
3.0 (collision)	uncertainty	
	1.5	0.7
	0.4	0.49
	0.2	0.5
1.1 (injection)	Including bias	0.5 (injection)
0.8 (collision)	due to	0.4 (collision 7 Tev)
	uncertainty	
	0.4	0.4
	Systematic (max value) (units) None 6.5 average 1.4 -10.7 (injection) 3.0 (collision) 1.1 (injection) 0.8 (collision)	Systematic (max value) (units)Uncertainty (max value) (units)None6.56.5 averageper arc cell1.40.81.40.9-10.7 (injection) 3.0 (collision)Including bias due to uncertainty1.1 (injection) 0.8 (collision)0.41.1 (injection) 0.8 (collision)Including bias due to uncertainty0.40.20.40.4

From S.Fartoukh and O.Bruning, LHC Report in press

Target field quality for series production (MQ)

I=12000 A

	Nominal warm,	Nominal warm,	Nominal	Systematic errors	Random errors
	without yoke	with yoke	cold	allowed	σ
a3				±2.0	1.0
b3				±2.0	1.0
a4				±0.5	0.7
b4				±0.5	0.7
a5				±0.5.	0.6
b5				±0.5	0.6
a6			-	±0.3	0.5
b6	4.16	3.93	3.97	±1.0 (1.5 cold)	0.5 2 3
a7				±0.15	0.15
b7				±0.15	0.15
a8				±0.1	0.1
b8				±0.1	0.1
a9				±0.1	0.1
b9				±0.1	0.1
a10				±0.1	0.3
b10	-0.28	-0.26	-0.27	±0.2	0.3

Upper(lower) limit: nominal+(-) allowed systematic errors+(-)2* allowed random errors.

How to fill the gap?

• Field quality requirements from beam physics will not be satisfied by the magnets as produced.

The correction system will fill the gap.

Effective if the field errors are known at operating conditions or beam induced effects can be measured and controlled !

Quality control levels and series measurement plan.

Gap between beam requirements/magnets as produced

- Differences between warm and cold harmonic values.
- Errors related to superconducting cable effects are not controlled.
- Control the effect of the electromagnetic load on odd harmonics.

LHC - MTA

Quality control levels

Three control levels

- Tolerance control in industry, warm magnetic measurements and alignment in industry
 - **coil size, collar geometry, iron packs, survey, field quality**

(talks by V.Remondino, J.Garcia, F.Patru)

- Warm magnetic measurements and alignment at CERN (<u>before</u> and <u>after</u> cold tests).
- Cold magnetic measurements and alignment at CERN (MB, SSS)

First level of control: Quality Control during Fabrication

Interaction with Fabrication process – Magnets at Room temperature

MB in Industry

- Geometry of coils and structures, Field Quality,
- Identify spot major faults (e.g. wrong wedges),
- > Alignment of end correctors, control of sagitta,
- \succ Control of the strand magnetization (4.5%) ,R $_{c}$ higher than 20 $\mu\Omega.$

MQ in Industry

(Saclay + LHC-MMS)

(LHC-MMS)

> Warm magnetic measurements, geometrical verifications of components.

Corrector Magnets(LHC ICP+LHC MTA)➢ Check mainly axis reference points and field direction,➢ In Industry with Cern equipment or at Cern.(talk by F.Patru)

.....Controls documented in a Quality Assurance Plan

TESTS AT CERN

Tests of the cold masses in warm or cold conditions

Warm re-testing of the cold masses <u>before cool-down</u> as a cross-check of factory tests and control of the transportation effect:

- quality of the magnetic field at warm,
- magnetic axis measurements (dipoles+correctors).
 Limited to statistical verifications (10% of the cold masses)

At this stage the control of the <u>cold properties</u> is not possible:

- deformation during cool down and under e.m. loads,
- iron saturation and superconducting cable effects.

.....Field quality measurements at cold are necessary!

MB SERIES MEASUREMENT PLAN AT CERN

SSS SERIES MEASUREMENT PLAN AT CERN

Roles of warm measurements (at 300 K)

- Warm measurements are necessary as:
 - Verify warm alignment measurements (through combined magnetic/survey measurements),
 - local and integral field, direction and harmonics,
 - Basis for warm-cold correlation on alignment (possibly field and harmonics) ⇒ potential for large gain of cold test time.
 - diagnostic after delivery and completion of magnet (monitor displacements/deformations due to shipping and cryostating).
 (talks by V.Remondino, J.Garcia, M.Buzio, N. Smirnov)

- 100 % testing necessary to:
 - provisional acceptance of the magnets,
 - provide databases for LHC installation, commissioning and operation.

Extended cold measurements

Magnetic measurement (and alignment for MB only) performed :

- measurements at injection with different powering history,
- harmonic measurements after quenches and current cycles,
- measure of the field direction (cold mole)

• Extended cold tests are necessary to:

determine the scaling laws for non-linear behaviors

(ex: decay and snap-back as a function of powering history),

- check the harmonic stability after quenches and after an accelerated life test (simulation of the life of the machine),
- verify alignment of MB and correctors in cold conditions,
- advance R&D for understanding of magnets.

....Significant sample: 10% of the population

(talk by M.Buzio)

Warm alignment after cool down

- Measurement performed for 100% of the dipoles (and associated correctors) and the SSS.
- Measurement performed at the latest possible time before the installation in the tunnel.
 - Identify any movements in the cold masses during cold test (magnetic measurements with rotating coil+QCD, optical measurement of coil rotation center, laser tracker for fiducialisation)

Corrector Magnets

Goals

Verify magnetic axis/mechanical axis, magnetic field strength, harmonics
 Magnet's integrity: Nturns, interturns shorts, polarity of connections,
 Width of hysteresis loop (mainly for nested magnets).

Strategy: (tests before being inserted in the dipoles or SSS)

- **Tests performed at warm in industry.**
- > Checks as statistical basis at warm at CERN.
- Cold measurements of 2 % to 10 % of the magnets
- **Tool CERN-built room temperature industry benches** (mechanical bench with rotating measurement coil, integrators, bipolar power supply **Cold test station at CERN.**

Criteria of acceptance for the correctors

Misalignment Magnetic/mechanical axis: 0.1 m rad max Roll angles: from 1.5 to 2.5 m rad depending on the correctors Main field strength: maximum spread of 1% around the average All harmonics: below 1% of the main field at 17 mm radius

See F.Patru talk for all the details

Target measurements for main dipoles

		absolute	reproducibility
Main field and field	(-)	1.0 10 ⁻⁴	1.0 10 ⁻⁴
integral			
Integral transfer function	(-)	1.0 10 ⁻⁴	1.0 10 ⁻⁴
Main field direction with	(mrad)	0.2	0.1
respect to fiducials			
Harmonics	(units @ 17 mm)	0.01	0.01
Magnetic center with	(mm)	0.15	0.15
respect to fiducials			

Note: test durations do not include installation

Target measurements for main quadrupoles

		absolute	reproducibility
Main field and field	(-)	5.0 10 ⁻⁴	1.0 10 ⁻⁴
integral			
Integral transfer function	(-)	5.0 10 ⁻⁴	1.0 10 ⁻⁴
Main field direction with	(mrad)	0.3	0.1
respect to fiducials			
Harmonics	(units @ 17 mm)	0.05	0.01
Magnetic center with	(mm)	0.15	0.15
respect to fiducials			

Note: test durations do not include installation

Equipment

Equipment	Units planned	Procured	Aim	
Twin rotating coils for	7 shaft pairs	2 coils pairs	integral and local field, direction,	
main dipoles	5 TRU's	5 TRU's	harmonics in main dipoles	
Automated scanners	2	2	integral and local field, direction, harmonics and axis in SSS	Talk by
Twin rotating coils for SSS	3 shaft pairs 2 TRU's	-	integral and local field, direction, harmonics in SSS	N.Smirnov
Warm moles	2 systems 1 spare mole	1	relative and absolute alignment of warm main dipoles, SSS and associated correctors	Talk of
Cold moles	1	-	relative alignment of cold main dipoles and associated correctors	M.Buzio
Single stretched wire	2	1	relative and absolute alignment of of cold SSS and associated correctors, cross calibration	
Salamander	1	-	in-situ calibration of integral dipole	In
Polarity tester	1	-	strength and direction of main field	progress
Coil center tracker	3 WRT+2 SRT	1 WRT+ 1 SRT	x-y position of the coil rotation axis	
Laser tracker	3	1	3-D survey of fiducials on cryomagnets and on measurement systems	

Equipment

Bench calibration equipment

Calibration bench	Units planned	Procured	Aim	
Shaft	1	1	coil surface and relative sector	
			orientation	
Sector	1	-	coil sector parameters (surface,	
			radius, tilt)	
Warm mole direction	1	-	field direction in warm mole	
Reference quadrupole	1	-	calibration of center and direction	Talk of
			of the reference quadrupole field	C Deferne
Mole axis	1	-	calibration of the axis of warm and	G.Delei ne
			cold mole	
telescope/CCD	1	-	calibration of conversion factors to	
			mm for telescope/CCD systems	

Bench calibration equipment

Magnetic measurement system and analysis

Conclusions

- I. Magnetic field measurement goal: verification of the field quality in operating conditions fitting with the accuracy required for commissioning and the operation of the LHC.
- II. Accuracy not achieved by industrial control and field measurement in warm conditions only. Warm and cold measurement at CERN are necessary.
- III. Test plan proposed with all the tests technically feasible within the time allocated.
- **IV.** Adapted test equipment is procured or in process of procurements.

