

Magnetic measurements of LHC dipoles and quadrupoles at room temperature at the factories

V. Remondino, CERN - LHC Division

- The magnetic field is proportional to the current in the search coils
- Quality Control of collared coils and cold masses at the factories
- Early detection of defects and acceptance tests
- Study of the evolution of characteristics of single magnets over time to observe the trend
- Collection of data of general interest for several studies, e.g. beam optics
- A correlation exists between measurements at room temperature and at cold in spite of some limitations

- Search coils manufacture (LHC/MMS-IF)
- Mole manufacture (LHC/MMS-IF & EST/ME)
- Software (LHC/IAS)
- Bench for the mole translation inside quadrupoles (CEA/ Saclay)

October 2001

Dipoles & correctors Coils are 14.2 mm wide 3 coils per mole 25 moles required 5 ready, 4 in the final phase

MQ, MQM, MQY & correctors Coils are 8.4 mm wide 5 coils per mole 12 moles required 4 ready

MQW (resistive) Coils are 7.4 mm wide 5 coils per mole 1 mole to be produced

Measurement rack

October 2001

Extensions - Manual

Used for MQM, MQW, MQY and for MB until April 2002.

Measuring a magnet takes about 6 hours (MB) **Cable – Automatic**

Used for MB starting in April 2002

2 moles in parallel.

About 4 hours per magnet.

Extensions – Automatic

Used for MQ.

System developed by CEA/SACLAY.

First measurement at ACCEL, November 2001.

October 2001

Measuring the magnetic length

Precision required: ± 0.3 mm

Stainless steel tube carefully measured and calibrated at 20°C

LED or camera at the extremities to measure the first and last position of the mole

October 2001

- Program developed in Labview by the LHC/IAS group
- Modules shared with the LHC/MTA group:
 - Coil position encoder interface
 - Harmonic analysis performed at a given mole position
- Dedicated modules for:
 - Control of the coil rotation
 - Longitudinal mole translation
 - Mole orientation with respect to the gravity
 - Control of power supply
 - Complete harmonic analysis, including the integral and magnetic length

- « Internal files » for historical analysis and comparison within LabView. Files are stored on a Sun at CERN
- Integrator output «raw data » for off-line analysis on demand. Files are stored on a PC at CERN
- Summary of harmonic analysis are imported in Excel files and stored on the Web server:

URL: http://cern.ch/lhc-div-mms

Measurements -> ITP 21 and 34

Summary of harmonic analysis

File		Aperture 1 - Collared coils Integrals																			
C1 (mT)	0.003	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.003	0.073
Angle (mrad)	5.589	-0.835	-0.241	0.291	-0.282	-0.435	-0.368	-0.123	0.029	0.053	-0.237	-0.110	0.489	0.263	1.598	1.223	-0.434	-0.721	1.580	2,424	12.267
Multipoles	Positio 1	Position 2 F	Positing 3 P	osition 4	Position 5	Position 6	Position 7	Position 8	Position 9 P	osition 10 P	Position 11	Position 12	Position 13	Position 14	Position 15	Position 16	Position 17	Position 18	Position 19	Position 20	
b1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
b2	-699	1.855	0.09	-0.622	-1.897	-0.079	0.878	0.326	0.047	-0.462	-0.424	-0.732	-1.090	0.165	-2.460	-0.173	-1.215	-2.772	-5.697	-4.423	-1.081
b3	44.8 0	3.539	1.17	0.461	0.707	-1.289	2.953	3.896	3.017	3.512	2.310	3.017	1.841	-0.242	-4.734	-5.426	-7.140	-5.705	0.797	-7.268	1.279
b4	-1.03	0.004	-0.01	-0.594	0.059	0.358	-0.041	-0.009	-0.180	-0.275	-0.378	-0.281	-0.936	0.131	-0.318	0.233	0.165	-0.015	0.015	0.538	-0.121
b5	-1.256	1.922	1.495	1.911	2.464	2.813	2.424	1.934	1.834	2.241	2.254	2.202	1.502	1.682	2.911	3.365	4.045	2.519	1.674	-1.999	2.028
b6	-1.740	-0.081	0.007	0.443	0.149	-0.181	-0.045	0.017	-0.010	0.133	-0.059	0.002	0.502	0.058	0.622	-0.123	0.290	0.262	-0.256	-0.331	0.024
b7	2.708	0.544	1.082	0.849	0.577	0.627	0.628	0.825	0.951	0.764	0.634	0.768	0.905	1.016	0.938	0.974	1.087	1.671	0.541	0.318	0.893
b8	-0.083	0.100	-0.022	-0.005	-0.013	-0.04	0.044	0.008	0.051	0.002	0.092	0.119	-0.032	-0.072	-0.114	-0.081	-0.047	-0.117	0.072	0.095	-0.002
69	0.379	0.374	0.242	0.257	0.331	0.335	0.393	0.394	0.386	0.369	0.379	0.383	0.353	0.286	0.225	0.218	0.172	0.058	0.376	0.348	0.311
b10	-0.343	0.041	-0.050	0.053	0.047	0.043	0.017	0.031	0.010	-0.011	-0.051	0.029	-0.055	-0.035	0.054	-0.108	0.048	0.023	0.030	0.133	0.000
b11	0.620	0.740	0.690	0,720	0.740	0.727	0.753	0.741	0.729	0.746	0.751	0.752	0.728	0.715	0.734	0.716	0.693	0.648	0.729	0.652	0.719
b12	-0.036	0.014	-0.017	0,008	-0.009	-0.004	0.008	0.007	-0.003	0.001	-0.001	0.010	-0.001	-0.012	-0.017	-0.027	-0.012	-0.020	0.005	0.014	-0.004
b13	0.110	0,088	0.114	0.096	0.082	0.082	0.084	0.094	0.092	0.093	0.089	0.091	0.100	0.110	0.099	0.095	0.088	0.130	0.109	0.076	0.096
b14	-0.018	-0.004	-0.008	0.006	-0.009	-0.011	-0.006	-0.003	-0.002	-0.005	-0.004	0.002	0.003	-0.005	0.000	-0.015	-0.007	-0.004	-0.003	0.001	-0.004
b15	0.011	0.032	0.031	0.036	0.033	0.038	0.031	0.026	0.027	0.028	0.030	0.029	0.026	0.025	0.038	0.033	0.046	0.035	0.020	0.002	0.030
b16							- \														
617																					0.000
al	-55.893	-8.354	-2.408	2.911	-2.817	-4.952	-3.683	-1.226	0.294	0.535	-2.370	-1.103	4.889	2.692	15.977	12.235	-4.339	-7.211	15.798	24.242	0.000
a2 - 2	-4.062	-2.133	-0.521	0.757	-6.277	-7.900	-2.896	-0.677	-1.983	-1.186	-0.741	-1.267	1.242	3.364	3.299	-3.186	-11.573	-6.824	6.127	4.277	-1.656
a5 - 1	1.205	-0.288	-0.011	0.514	0.292	1.047	-0.027	0.224	0.302	0.022	0.720	-0.464	0.629	0.100	-0.761	0.100	0.724	1.088	-0.793	-1.603	0.159
a4 ~5	1.758	-0.294	0.076	-0.398	.139	1.165	0.175	0.027	-0.361	-0.323	-0.126	0.229	0.164	-0.491	-0.254	2.003	4,491	2.649	-0.343	-0.874	0.519
a5 •C	-3.179	0.373	0.110	-1.091	0159	-0.348	-0.084	-0.009	-0.219	-0.239	-0.141	-0.357	-0.755	-0.229	-0.686	-0.218	0.195	-0.177	0.366	0.519	-0.266
ao -7	-0.180	-0.283	-1.342	-0.462	-0.405	-0.401	-0.419	0.021	0.071	-0.064	-0.215	-0.221	-0.332	-0.551	-0.245	-0.747	-0.714	0.041	0.378	0.341	-0.251
a/ o9	-2.193	0.057	0.051	0.165	-0.14	-0.057	-0.008	0.025	0.035	0.107	0.0	0.139	0.101	0.060	0.324	0.052	-0.217	-0.116	-0.022	-0.021	-0.037
ao -9	0.008	0.004	0.055	0.114	-0.111	-0.104	0.046	-0020	-0.065	0.014	0.021	0.060	0.116	0.277	0.141	0.115	-0.310	-0.324	-0.178	-0.137	-0.013
a5 510	0.142	-0.097	-0.019	0.021	0.011	0.003	-0.024	-0.000	0.010	-0.023	-0.002 1	-0.021	0.107	0.013	-0.030	0.020	0.031	0.030	0.013	0.001	0.012
a10 a11	-0.107	-0.001	0.001	0.001	0.026	0.023	0.000	0.01	0.005	0.010	0.020	0.007	0.020	0.007	-0.007	-0.004	-0.042	-0.047	0.000	0.023	-0.017
12	-0.221	0.002	0.006	0.014	0.005	0.003	0.027	0.004	-0.013	0.002	0.006	0.008	0.042	0.038	0.000	0.014	-0.023	-0.045	0.023	0.022	-0.017
13	0.005	0.002	0.000	0.001	0.003	0.003	0.003	0.004	0.007	0.004	0.000	0.000	0.006	0.000	0.006	0.000	0.005	0.010	0.002	0.000	-0.007
a10 514	-0.000	0.005	0.002	300.0	0.007	0.003	0.003	0.005	0.000	0.007	0.000	0002	0.004	0.002	0.000	0.004	0.000	-0.005	0.002	0.001	-0.002
a15	-0.052	0.000	-0.002	0.003	-0.007	X 003	-0.004	-0.000	-0.000	-0.007	-0.005	-0.002	-0.004	-0.002	-0.008	-0.009	-0.003	-0.003	-0.001	0.005	-0.002
a16	-0.032	0.000	-0.003	0.000	-0.002	-0.000	-0.000	-0.002	-0.002	-0.000	-0.000	-0.01	-0.005	-0.001	-0.000	-0.003	-0.003	-0.000	-0.001	0.000	-0.000
a17																					
Dx (m)	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dv (m)	0.00	0.00	0.00	00	0.00	0.0	0.00	0.00	a a a a a a a a a a a a a a a a a a a	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00
Magnetic le	nath (m)	14 45	548																		
C1 centr	e (mT)	005	064														\				
		<u> </u>		· · ·																	
				1																	
			-			N N						V									
]			C		N			h				ิล			Λν	V V			
		₽ m								N		a					Δ Λ , y				
Monotic measurements of LLC displace and supdrumplace of record terror terror																					
Nagnetic measurements of LHC dipoles and quadrupoles at foom temperature													10								
Ctoper 2001 1												ΠZ									
		ä	ar me	i act	unes	5															

Measuring at the factories

Main field relative module:

October 2001

Magnetic measurements of LHC dipoles and quadrupoles at room temperature at the factories

at the factories

Example of trend

- Quadrupoles and dipoles: one system at CERN.
- Quadrupoles:
 - MQ: 1 system operational at Saclay, 1 system to Accel
 - MQW: 1 system to SL
 - MQM : 1 system to Accel (end of the year)
 - MQY: 1 system to Tesla (end of the year).
- Dipoles:
 - A provisional system delivered to Ansaldo, Alstom and Noell.
 Final systems: 1st in April 2002, 2nd by end of 2002.
- An extra system at CERN for final acceptance tests (end of 2001).

- Last May the magnetic measurement system, originally designed for quadrupoles, had to be adapted to dipoles.
- Installed and already being used at the manufacturers' premises.
- Robust, easy maintenance, rapid measurement, self-sufficient.
- Hardware commonly available on the market.
- Software developed using industrial control system standards.
- The system proved to be flexible, adaptable and able to measure any LHC magnet.