An approximative criterion for the stability of an intense bunched beam at high chromaticity

(G.Besnier, P.Kernel , R.Nagaoka , J.L.Revol)

When the ESRF works with a high chromaticity, the intensity in single bunch mode is suspected to be limited by a fast transverse instability of "post head-tail" type (with growing time shorter than a synchrotron period). Elements of a theory* in frequency space are presented, using J.L. Laclare 's formalism. The work on this topic is part of a thesis by Ph.Kernel : some aspects are recent, not fully achieved and possibly need more reflection.

J.L.Laclare's formalism is more easily understood when we define the matrix elements :

| $\begin{gathered} \quad \begin{array}{r} \mathbf{A}_{\mathbf{p}^{\prime}, \mathbf{p}}=\text { the amplitude frequency line } \quad \sigma\left(\omega_{\mathrm{p}^{\prime}}\right) \text { in response to a unit excitation at } \\ =\text { the spectrum of the longitudinal bunch density shifted at } \\ \text { (later designed as a "shaker mode" spectrum, centered at } \end{array} \omega_{\mathrm{p}} \\ \left.=\omega_{\mathrm{p}}\right) \end{gathered}$ |
| :---: |
|  |  |
|  |  |

such a matrix A works like the"impulse response" of a filter in frequency space

* See also a previous and different analysis by R.D.Ruth and J.M. Wang : Vertical fast blow up in a single bunch . IEEE Transactions on Nuclear Sciences,NS-28,N³,june 1982.


## Transverse modes of a monokinetic bunch, broad band impedance

the stability of a collective bunch oscillation is given by the imaginary part of the complex frequency shift $\quad \Delta \omega_{c}^{\mathbf{c}}$ from $\mathrm{Q}_{0} \omega_{o}$

## narrow band impedanc $\mathrm{e}^{*} \mathrm{Z}_{\mathrm{T}}(\boldsymbol{\omega})$

1)admit the coasting beam result :
$\Delta \omega_{\mathrm{cp}}^{\mathrm{o}}=\Lambda \mathrm{jZ}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right), \quad \Lambda=\frac{\mathrm{cI}}{4 \pi \mathrm{I}_{\mathrm{o}} \mathrm{E}_{\mathrm{o}} / \mathrm{e}}$. [or $\left.\Delta \omega_{\mathrm{cp}}^{0}{ }^{0} \sigma\left(\omega_{\mathrm{p}^{\prime}}\right)=\Lambda \delta_{\mathbf{p}^{\prime}, \mathrm{p}} \mathrm{j} \mathrm{Z}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) \sigma\left(\omega_{\mathrm{p}}\right)\right]$
2)deduce the bunched beam formula :

$$
\Delta \omega_{\mathrm{c}}^{\mathrm{o}} \sigma\left(\omega_{\mathrm{p}^{\prime}}\right)=\underset{\text { (only one input ine) }}{\Lambda \mathbf{A}_{\mathrm{p}}, \mathbf{p}} \mathrm{j} \mathrm{Z}_{\mathrm{p}}\left(\omega_{\mathrm{p}}\right) \sigma\left(\omega_{\mathrm{p}}\right)
$$

broad band impedance $\mathrm{Z}_{\mathrm{T}}(\boldsymbol{\omega})$
3)same coasting beam formula :
$\Delta \omega_{\mathrm{cp}}^{\mathrm{o}}=\Lambda \mathrm{jZ}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right), \quad \Lambda=\frac{\mathrm{cI}}{4 \pi \mathrm{I}_{\mathrm{o}} \mathrm{E}_{\mathrm{o}} / \mathrm{e}}$
stability : upper side band of mode " p": $\omega_{\text {cp }}^{+}=\left(\mathbf{p}+\mathrm{Q}_{\mathrm{o}}+\Delta \omega_{\mathrm{cp}}^{\mathrm{o}}\right) \omega_{\mathrm{o}}$ unstable if $\operatorname{Re}\left(\mathbf{Z}_{\mathbf{T}}\left(\boldsymbol{\omega}_{\text {cp }}^{+}\right)<0\right.$.

stability : 2-look for approximative
4)bunched beam : sum all input lines

$$
\Delta \omega_{\mathrm{c}}^{\mathrm{o}} \sigma\left(\omega_{\mathrm{p}^{\prime}}\right)=\Lambda_{\mathrm{p}} \cdot \mathrm{j} Z_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) A_{\mathrm{p}^{\prime}, \mathrm{p}} \sigma\left(\omega_{\mathrm{p}}\right)
$$

stability
1- look for computed solutions of this standard eigen-value problem :

solutions of the eigen-value problem : $\sigma_{\mathrm{q}}\left(\omega_{\mathrm{p}}\right)$ an eigen-mode spectrum associated with an eigen-value $\quad \Delta \omega_{\mathrm{c} \mathrm{q}}^{\mathrm{o}}$, $\mathrm{C}_{\mathrm{q}}$ the associated eigen-value of matrix $\quad \mathbf{A}$, the $\mathrm{n}^{* *}$ :
$\Delta \omega_{\mathrm{cq}}^{\mathrm{o}}=\Lambda \mathrm{j}\left[\mathrm{Z}_{\mathrm{Tq}}\right]_{\mathrm{eff}} \mathrm{C}_{\mathrm{q}}$, with effective impedance : $\quad\left[\quad \mathrm{Z}_{\mathrm{Tq}}\right]_{\mathrm{eff}}=\frac{\stackrel{\mathrm{p}}{ } \mathrm{Z}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) \sigma_{\mathrm{q}}^{2}\left(\omega_{\mathrm{p}}\right)}{\stackrel{\rightharpoonup}{\mathrm{p}} \sigma_{\mathrm{q}}^{2}\left(\omega_{\mathrm{p}}\right)}$.

Approximation of $\quad \sigma_{\mathrm{q}}$ by a "shaker mode": $\quad \sigma_{\mathrm{q}}\left(\omega_{\mathrm{p}}\right)=\exp -\left[\left(\omega_{\mathrm{p}}-\omega_{\mathrm{q}}\right)^{2} \sigma_{\tau}^{2} / 2\right]$, then $\mathrm{C}_{\mathrm{q}}=\frac{2 \sqrt{\pi / 3}}{\omega_{\mathrm{o}}} \sigma_{\tau}$ (indpt of q$)$.
Conclusion : using J.L.Laclare 's formalism, we recover rapidly the following property :
Adding the contributions of upper and lower side-bands : monokinetic coasting and bunched beams are unstable with respect to any impedance which has a resistive component . The frequency shift $\operatorname{Re}\left(\Delta \omega_{\mathrm{c}} \mathrm{q}\right)$ and growing time $\operatorname{Im}\left(\Delta \omega_{\mathrm{c} q}\right)^{-1}$ of any mode " q " can be computed

* by analogy between a shaker tuned at which overlaps only one line
$\omega_{\mathrm{p}}$ and a narrow band impedance $\quad \mathrm{Z}_{\mathrm{T}}(\omega)$
$\omega_{\mathrm{p}}$ of the transverse returned signal .
** F.J. Sacherer derived such approximative but very useful formulas for the stability of head-tail sine modes


## (G.Besnier, P.Kernel , R.Nagaoka , J.L.Revol)

$\tau$ : time delay of a particle, $\quad \tau(\mathrm{t})=\tau_{\mathrm{o}}+\tau \mathrm{t}$
$\dot{\tau}$ : a constant of the particule motion during a delay $\ll \quad \mathrm{T}_{\mathrm{s}}$, " post head -tail "regime.
gaussian dispersion
function

$$
: g_{o}(\tau)=\frac{\exp -\left[\dot{\tau}^{2} / 2 \sigma_{\tau^{2}}^{2}\right]}{\sqrt{2 \pi} \sigma_{\tau}}
$$

$$
\sigma_{\tau}=\alpha \sigma_{\mathrm{E} / \mathrm{E}_{\mathrm{o}}}
$$

$\sigma_{\mathrm{E} / \mathrm{E}_{\mathrm{o}}}$ the relative energy spread (rms).

## Dispersive effects :

## * incoherent betatron frequency spread :

chromatic dispersion of the betatron frequencies, with $\quad \xi=\frac{\mathrm{dQ} / \mathrm{Q}_{\mathrm{o}}}{\mathrm{dE} / \mathrm{E}_{\mathrm{o}}}, \omega \xi=\frac{\xi}{\alpha} \mathrm{Q}_{\mathrm{o}} \omega_{\mathrm{o}}$ :

$$
\omega_{\beta}(\tau)=\mathrm{Q} \omega_{\mathrm{o}}=\mathrm{Q}_{\mathrm{o}} \omega_{\mathrm{o}}+\left(\omega_{\xi}-\mathrm{Q}_{\mathrm{o}} \omega_{\mathrm{o}}\right) \tau
$$

every line $\quad \omega_{\mathrm{p}}=\left(\mathrm{p}+\mathrm{Q}_{\mathrm{o}}\right) \omega_{\mathrm{o}}$ of the monokinetic bunch is widened and becomes a (narrow) continuous gaussian spectrum : $\quad \sigma(\omega)=\frac{1}{\left|\omega_{\mathrm{p}}-\omega_{\xi}\right|} \mathrm{g}_{\mathrm{o}}\left(\frac{\omega-\omega_{\mathrm{p}}}{\omega_{\mathrm{p}}-\omega_{\xi}}\right)$ with rms width $\quad\left|\omega_{p}-\omega_{\xi}\right| \sigma_{\tau}$.

## *A new problem for the stability of a coherent transverse mode :

monokinetic bunched beam:
$\Delta \omega_{\mathrm{c}}^{\mathrm{o}} \sigma\left(\omega_{\mathrm{p}^{\prime}}\right)=\Lambda \cdot \mathrm{jZ}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) \mathrm{A}_{\mathrm{p}^{\prime}, \mathrm{p}} \quad \sigma\left(\omega_{\mathrm{p}}\right)$

(standard algebra) $\rightarrow$| bunched beam with energy spread: |
| :---: |
| $\mathrm{J}_{\mathrm{p}^{\prime}}^{-1}\left(\Delta \omega_{\mathrm{c}}\right) \sigma\left(\omega_{\mathrm{p}^{\prime}}\right)=\Lambda \cdot{ }_{\mathrm{p}} \mathrm{jZ}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) \mathrm{A}_{\mathrm{p}^{\prime}, \mathrm{p}} \sigma\left(\omega_{\mathrm{p}}\right)$, |
| (non standard) |

The (desired) complex frequency shift
the following dispersion integral :
$\Delta \omega_{c}$ from $Q_{o} \omega_{o}$ now is hidden inside

$$
\mathrm{J}_{\mathrm{p}}\left(\Delta \omega_{\mathrm{c}}\right)=\int \frac{\mathrm{g}_{\mathrm{o}(\dot{\tau}) \mathrm{d} \dot{\tau}}}{\Delta \omega_{\mathrm{c}}-\left(\omega_{\mathrm{p}}-\omega \xi\right) \dot{\tau}}
$$

Resolution "by hand" for a mode spectrum $\quad \sigma_{q}\left(\omega_{\mathrm{p}}\right)$, which is centered at a frequency $\quad \omega_{\mathrm{q}}$, leads to a classical : dispersion integral relation :

$$
\Delta \omega_{\mathrm{cq}}^{\mathrm{o}} \mathrm{~J}_{\mathrm{q}}\left(\Delta \omega_{\mathrm{cq}}\right)=1
$$

$$
\cdot \mathrm{Z}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) \sigma_{\mathrm{q}}^{2}\left(\omega_{\mathrm{p}}\right)
$$

$\mathrm{C}_{\mathrm{q}}$ is the associated eigen value of $\quad \mathrm{A}_{\mathrm{p}, \mathrm{p}^{\prime}}$ and $:\left[\mathrm{Z}_{\mathrm{Tq}}\right]_{\mathrm{eff}}=\frac{\mathrm{p}_{\mathrm{p}}}{\mathrm{Z}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right) \sigma_{\mathrm{q}}^{2}\left(\omega_{\mathrm{p}}\right)}$.
relations in complete analogy with the J.L.Laclare* coasting beam result : $J_{p}^{-1}\left(\Delta \omega_{c p}\right)=\Lambda j Z_{T}\left(\omega_{p}\right)$ or $\quad \Delta \omega_{\mathrm{cp}}^{\mathrm{o}} \mathrm{J}_{\mathrm{p}}\left(\Delta \omega_{\mathrm{cp}}\right)=1$, for the mode with p wavelengths

[^0]Bunched beam with energy spread and chromaticity . Stability of a transverse oscillation of post head-tail type .


Mapping of stability limits $\operatorname{Im}\left(\quad \Delta \omega_{\mathrm{cq}}^{\mathrm{o}}\right)=0($ monocinetic $)$ and $\operatorname{Im}\left(\quad \Delta \omega_{\mathrm{cq}}\right)=0$ (energy spread)

$$
\text { on the plane } \mathrm{W}=\mathrm{U}+\mathrm{jV}=\frac{\Lambda\left(\mathrm{Z}_{\mathrm{Tq}}\right)_{\mathrm{eff}} \mathrm{C}_{\mathrm{q}}}{\sqrt{2}\left|\omega_{\xi}-\omega_{\mathrm{q}}\right| \sigma_{\tau}}=\frac{-\mathrm{j} \Delta \omega_{\mathrm{cq}}^{\mathrm{o}}}{\sqrt{2}\left|\omega_{\xi}-\omega_{\mathrm{q}}\right| \sigma_{\tau}}
$$



$$
\begin{gathered}
\begin{array}{c}
\text { (green) "circle rule" : } \\
\begin{array}{c}
\text { or }\left|\Delta \omega_{\mathrm{cq}}^{\mathrm{o}}\right|<\sqrt{\frac{2}{\pi}}\left|\omega_{\xi}-\omega_{\mathrm{q}}\right| \sigma_{\tau} \\
\text { Intensity threshold : } \\
\mathrm{I}_{\mathrm{th}}= \\
\frac{4\left(\mathrm{E}_{\mathrm{o}} / \mathrm{e}\right) \alpha\left(\sigma_{\mathrm{E}} / \mathrm{E}\right)\left|\omega_{\xi}-\omega_{\mathrm{q}}\right| \sigma_{\tau}}{\sqrt{2 / 3} \beta\left|\mathrm{Z}_{\mathrm{Tq}}\right|_{\mathrm{eff}}} \\
\hline
\end{array}
\end{array} .
\end{gathered}
$$

ESRF intensity threshold
resonator: $\beta_{\mathrm{R}_{\mathrm{s}}}=13.5 \mathrm{M} \Omega, \mathrm{f}_{\mathrm{r}}=22 \mathrm{GHz}, \mathrm{Q}=1$ with $\omega_{\mathrm{q}}=-\omega_{\mathrm{r}} / 2$ and $\left|\mathrm{Z}_{\mathrm{Tq}}\right|_{\text {eff }}=.6 \quad \mathrm{R}_{\mathrm{s}}$ :


See a very similar criterion by R.D.Ruth and J.M.Wang (page 1 for reference)


[^0]:    * J.L.Laclare : coasting beam transverse coherent instabilities (ESRF report)

