

NLC - The Next Linear Collider Project Damping Rings Impedance and Collective Effects

John Corlett[†], K. Bane[‡], J. Byrd[†], M. Furman[†], S. Heifets[‡], K. Ko[‡], C. Ng[‡], T. Raubenheimer[‡], G. Stupakov[‡], F. Zimmermann[‡],

[†]LBNL, [‡]SLAC

BERKELEY LAS

Instabilities Workshop, ESRF, March 2000

Damping Rings Parameters

- 2 main rings for generating low emittance e⁺/e⁻
- 1 pre-ring for capturing e⁺
- Similar to 3rd generation synchrotron light sources except
 - Injection and extraction at 120 Hz
 - Three bunch trains 95 bunches each
 - 800 mA, 1.9x10¹⁰ particles/bunch
 - Typical beam size $60 \ge 6 \ \mu m (x,y)$
 - Bunch length 4 mm
 - Vacuum chamber radius 1.6 cm
- Collective effects less severe for pre-damping ring
 - Larger beampipe, larger emittance, longer bunch, larger momentum compaction

Damping Rings

Must provide stable injection into linac
Similar to 3rd generation light sources

	Pre-damping ring	Main damping rings
Energy (GeV)	1.9 – 2.1	1.9 - 2.1
Circumference (m)	214	297
Bunch spacing (ns)	2.8	2.8
Fill pattern	2 trains 95 bunches	3 trains 95 bunches
	2 gaps 100 ns	3 gaps 68 ns
Damping time (ms)	< 5.21	< 5.21
N _{max} /bunch	1.9×10^{10}	1.6×10^{10}
Current (mA)	800	750
Injected emittance X/Y (m-rad)	$< 9x10^{-2}$ (edge)	< 150x10 ⁻⁶ (rms)
Extracted emittance X/Y (m-rad)	< 1x10 ⁻⁴	$< 3x10^{-6} / 0.03x10^{-6}$
RF voltage (MV)	2	1.5
Momentum compaction	0.0051	0.00066
Energy spread (%)	0.09	0.09
Bunch length (mm)	8.4	3.8
Vacuum pressure (Torr)	1×10^{-9}	1×10^{-9}
Maximum rep. Rate (Hz)	120	120

Berkeley Lai

Impedance Model

SHART RY

Breakdown of longitudinal wake

- Longitudinal wake
 - Major vacuum chamber components
 - RF cavities
 - Resistive wall
 - Ante-chamber slots
 - Bellows shields
 - BPM's
 - Injection and extraction magnets
 - Z/n 0.03
- Similar impedance model for transverse wake
- Single bunch thresholds > design currents

s (m)

Impedance model

•

Transverse modes

• Longitudinal modes

Longitudinal single-bunch (ZDR)

• Potential well distortion

- Microwave instabilities
 - Z/n 0.03
 - Strong threshold estimate

$$I_p = \frac{2 || \left| \left(\frac{E}{e}\right) \left(-\frac{E}{e}\right)^2}{\left| \frac{Z_{||}}{n} \right|_{eff}}$$

- Threshold 2 x operating current
- Simulations
 - Threshold 4 x operating current

- Transverse mode coupling instability (TMCI)
 - Simulations

• Threshold 10 x operating current

Gap transient effects

- Bunch-to-bunch synchronous phase variation
 - Leads to energy variation after bunch compression
 - 4° / 30 ps
- Compensation techniques
 - Adaptive-inverse feedforward with broadband klystron (f 10 MHz)
 - Harmonic cavities
 - Ring off-frequency (f 40 kHz)
 - High-stored-energy cavities

2kI_oT_{gap}

V_{cavity} sin synch

John Corlett, Instabilities Workshop, ESRF, March 2000

Coupled-bunch instabilities (ZDR)

- Residual cavity HOM's
- Resistive wall
- Longitudinal

- Control residual motion with broadband feedback systems
 - Extend and develop ALS and PEP-II B-factory designs

Transverse

Fast ion instability

- Interaction between intense electron beam and ions gives rise to fast transverse instability
- Growth time < 1 ms
- Experimental evidence from ALS and PLS
 - Maintain average pressure < 1 nTorr
 - Bunch-by-bunch feedback system
 - Additional gaps in bunch trains

Electron cloud instability

- Intense positron beam produces cloud of photoelectrons and secondary electrons
- Experimental evidence at BEPC
- Desorbs gas from surfaces
- Interaction between positron beam and electron cloud gives rise to fast transverse instability
 - Low secondary emission coatings
 - Bunch-by-bunch feedback system
 - Solenoidal magnetic fields

Lifetime and intrabeam scattering

- Gas-scattering lifetime several hours
- Touschek lifetime few minutes
 - Increase bunch volume for commissioning studies
- Intra beam scattering (IBS)
 - significant at lower energies

Conclusions

- Impedance model and analysis for ZDR (1996)
 - no show-stoppers
- Updated impedance model
 - SLAC workshop, Feb. 2000
- Collective effects to be re-calculated