

High-resolution powder diffraction beamline ID22

Andy Fitch fitch@esrf.fr

STREAMLINE

STREAMLINE has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 870313

Synchrotron radiation and powder diffraction

High intensity, collimation and λ tunability \downarrow

- High angular resolution, i.e. narrow peak widths
- Rapid data collection / good statistics
- Highly monochromatic X-rays so well-defined instrumental peak shape (no $\alpha_1\alpha_2$ doublets, etc)
- + λ tunable: measure at absorption edges, or well away; optimise for the experiment
- High energies for increased *Q* range, PDF, or penetrate through absorbing samples or sample environments

ESRF's high resolution powder diffraction beamline

Improvements to ID22 during EBS upgrade

- EBS storage ring Brighter source ⇒ two-fold increase in flux
- Change of undulators (⇒ 2.5 m long in-vacuum u26)
 ⇒ two-fold increase in flux above 60 keV
- New multi-analyser stage (9 \Rightarrow 13 Si 111 crystals)
- Installation of Eiger pixel detector behind multi-analyser stage
- Automatic correction for axial divergence

 ⇒ Narrower and more-symmetric peaks
 ⇒ Improved statistical quality at high angles
- BLISS has replaced SPEC for beamline control.

Nine-channel multi-analyser stage

J.-L. Hodeau, M. Anne, P. Bordet, A. Prat, Institut Néel, Grenoble. Hodeau *et al. Proceedings SPIE*, **3448**, 353-361, (1998)

Page 6

Multi-analyser upgrade

Jan 2021

July 2021

9 analyser + 9 scintillation crystals counters

9 analyser + Eiger 2M crystals

ID22 Powder Diffractometer

Capillary sample spinner

13-channel Si 111 multi-analyser stage + Eiger2 X 2M-W CdTe

Original 9-channel version conceived by J.-L. Hodeau, M. Anne, P. Bordet, A. Prat, Institut Néel, Grenoble. Hodeau *et al. Proceedings SPIE*, **3448**, 353-361, (1998)

Analyser crystal

Stringently defines a true 2θ angle rather than infers 2θ from the *position* of a slit or pixel of a PSD.

- Narrow (sample-limited) peaks with accurate positions
- Peak positions insensitive to displacement-type aberrations, sample misalignment, specimen transparency, size / shape / surface effects, etc.
- Peak widths independent of any $\theta/2\theta$ parafocusing condition
- Supresses fluorescence, Compton, parasitic scatter.
- But it needs to be scanned, so is not as fast as a PSD.

Debye Scherrer cones

Debye Scherrer cones

Axial divergence \Rightarrow asymmetry

Analyser crystal + 2D Eiger pixel detector

Allows elimination of low-angle peak asymmetry due to axial divergence by exploiting the axial (horizontal) resolution of the detector.

- Improves peak shapes which become more symmetric
- Reduces peak widths, so improves angular resolution
- Exploit the full width of the detector (38 mm) at higher 20 angles, so improves the statistical quality of the data

Dejoie et al. J. Appl. Cryst. 51, 1721-1733 (2018); Fitch & Dejoie, J. Appl. Cryst. 54, 1088-1099 (2021)

High angular resolution, symmetric peak

Zeolite ZSM-5

Rietveld fit to LaB₆ at 35 keV

FWHM of LaB₆ at 35 keV

Polymorph of insulin ($\lambda = 1.3$ Å)

2θ corrected

Page 20 Insulin sample from I. Margiolaki's group, Patras, Greece

Polymorph of insulin ($\lambda = 1.3$ Å)

🤯 TOPAS - [Indexing. ...]

- 0 ×

Large 2d medical-imaging detector

41 × 41 cm² Perkin Elmer XRD 1611 medicalimaging detector for measurements up to 75 keV.

Particular attributes of ID22

- Very high 2θ resolution
- High energies (6–75 keV)
- Standard high-resolution operation = 35 keV (0.354 Å)
 ⇒ penetrate through absorbing samples
 ⇒ spinning capillary samples for all powder specimens
 ⇒ versatility in sample environments
- Automatic correction for axial divergence
- High intensity
- 2D medical imaging detector for complementary measurements (e.g. PDF analysis)

Sample spinners/stage

Green spinner

Yellow spinner

Red spinner

XYZ stage

Red spinner

Powder Diffraction = Sample Environments

<u>Routine temperature range</u> $\approx 4 \text{ K} - 1600^{\circ}\text{C}$

- Cryostream N₂ gas blower, 80–500 K
- Liquid-He flow cryostat, down to 4 K
- Hot air blower, 950°C
- Mirror and induction furnaces, $\approx 1600^{\circ}$ C
- Gas adsorption cell (0-100 Bar)
- Robotic 75 sample changer

All computer controlled and linked to scans

Sample environments

Cryostream & blower

 \Leftarrow

Induction furnace \Rightarrow

The European Synchrotron

Liquid-He cryostat

Page 29

User's *in-situ* catalytic reaction setup

(1) Two reactor beds in parallel
(2) 15 cm isothermal zone (820°C +/- 15°C)

I. Metcalfe *et al*.

Robotic sample changer

ESRF

See our YouTube video!!

https://www.youtube.com/watch?v=OEhf8Logz44

75 samples

Up to 75 samples, in 5 banks of 15

Not just capillaries

https://www.youtube.com/watch?v=OEhf8Logz44

What sorts of experiments are performed at ID22?

- <u>Structural studies</u> crystal structures, atomic PDF analysis, etc.
- <u>In-situ studies</u> evolution with temperature, time, atmosphere, voltage, etc., phase changes, solid-state chemistry, gas adsorption, electrochemistry.
- <u>Anomalous scattering</u> distinguish neighbouring elements in the Periodic Table.
- <u>High throughput</u> many samples, varied compositions or preparation conditions, etc.
- <u>Quantitative analysis</u> many phases, trace phases.
- <u>Microstructure</u> detailed analysis of peak shapes.
- <u>Residual strain</u> mapping peak positions in components.
- Anything you can fit on. Very flexible instrument!

Applications

Materials Science

Physics

er al. FICB 99, 144423 (2019)

Industry

Geosciences

Structural chemistry

Guerain *et al.* Acta Cryst. C77, 800 (2021)

Cultural Heritage

Environment and Energy

(*R*)-rasagiline mesylate

ISSN 2052-5206

Hydrogen bonding patterns and C— $H \cdots \pi$ interactions in the structure of the antiparkinsonian drug (*R*)-rasagiline mesylate determined using laboratory and synchrotron X-ray powder diffraction data

Analio J. Dugarte-Dugarte,^a‡ Robert A. Toro,^b Jacco van de Streek,^c José Antonio Henao,^b Andrew N. Fitch,^d Catherine Dejoie,^d José Miguel Delgado^a and Graciela Díaz de Delgado^a*

80000 Lab data (a)59500 Intensity (arb. units) (b)H5 (c)39000 С (d)18500 (e) (f)-2000 13 31 22 40 Page 38 20 (°)

Received 18 July 2023 Accepted 6 September 2023

Rietveld fit of solved structure

ESRF

Molecular packing / hydrogen bonding

Tetragonal tungsten bronzes

 $Ba_2NaNb_5O_{15}$ showing the orthorhombic splitting of the 660 tetragonal peak that persists to 4 K

Grendal *et al. J. Appl. Cryst.* <u>56</u>, 1456 (2023)

 $Sr_xBa_{1-x}Nb_2O_6$ measured at and away from the Ba K edge, showing subtle changes in peak intensities from which the Ba/Sr distribution can be deduced.

Grendal *et al. ACS Omega* <u>8</u>, 37592 (2023)

Sunscreen adsorbed in zeolite-L

Page 42 Confalonieri et al. Micropor. Mesopor. Mat. <u>344</u>, 112212 (2022)

The European Synchrotron ESRF

Thanks to

ISSN 1600-5775

ID22 – the high-resolution powder-diffraction beamline at ESRF

Andrew Fitch,* Catherine Dejoie,* Ezio Covacci, Giorgia Confalonieri, Ola Grendal, Laurent Claustre, Perceval Guillou, Jérôme Kieffer, Wout de Nolf, Sébastien Petitdemange, Marie Ruat and Yves Watier

The ID22 beamline team

Catherine Dejoie dejoie @esrf.fr Javier Gainza Martin

Meng He

Ezio Covacci

