## Detector Specific Corrections

CCD raw image [ADU]
CCD dark image [ADU]
Flat field image [photons/ADU]

$f_{2}$ (corrected for distortion)

# 1. Dark image subtraction [ADU] $\quad i_{1}=i_{\text {raw }}-i_{\text {dark }}$ <br> 2. Spatial distortion correction [ADU] $I_{2}=\operatorname{SPD}\left(I_{1}\right)$ <br> 3. Division by flatfield [photons] <br> $$
i_{3}=i_{1} / f_{2}
$$ 

-Subtraction and division are done pixel by pixel
-The spatial distortion correction consists of a horizontal and vertical displacement of each pixel

## Scattering Specific Corrections


4. Normalization to I0 [photons] and conversion to scattering cross section [1/sterad]
inclined surface

(see Bösecke, Diat, J. Appl. Cryst. (1997). 30, 867-871
and Narayanan, Diat, Bösecke, NIM A 467-468 (2001) 1005-1009)

## Sample and Beam Specific Corrections

5. Normalization to transmission and scattering volume, e.g. thin film: T=I1/I0, d: sample thickness

$$
i_{5}=\frac{i_{3}}{d \cdot I_{1}} \cdot \frac{L_{p}^{2}}{p_{1} \cdot p_{2}} \cdot \frac{L_{p}}{L_{0}}
$$

6. Polarization correction (WAXS)
7. Reciprocal space mapping (WAXS)
(Ewald sphere projections in reciprocal space, sample orientation required)
8. Azimuthal averaging

## "WAXS Detector Geometrie" (real space)



## "WAXS Projection" (reciprocal space)



## Ewald Sphere Projection (WAXS)



