

X-Ray Laue Diffraction Microscopy

CNIS VEEL

Nano- and microscale X-ray characterisation of functional materials and microstructure

<u>J.S. Micha</u>, O. Robach, S. Tardif, O. Ulrich, R.R.P. Purushottam Raj Purohit, O. Geaymond, L. Martinelli, G. Renaud, B. Formet, M. De Santis, X. Biquard, Anaël Coste, D. Mornex **Univ. Grenoble Alpes, CEA/IRIG/MEM & SyMMES, CNRS Institut Néel, CNRS SERAS**

Objectives & scopes

Laue Microscopy

HR spatial: 300 nm x 300 nm HR angular: 0,006° ⇔ 0,01%

Capabilities

No sample preparation In situ & operando (T, force, I, V, XEOL,...) Polycrystalline & single crystal 2D mapping (9000 pts/h) Flexible FOV Damaged material

Augmented µLaue

Depth resolution (500nm) Stress assessment Extended defects (plasticity)

Principles: sensitivity & resolution

Absolute positions => **orientation**

Relative positions / reference => strain

Effect of strain or lattice parameters change

Standard Laue diffraction Experimental & quantitative determination of unit cell :

- Orientation
- (angular) Shape (lattice parameters, strain)
- Absolute values
- **10⁻⁴ resolution** for
 - high absorbing material
 - low defects density
- Better resolution on gradients

Al-based Laue pattern indexing: complexity

Simulated "complete" Laue pattern Single crystal Cu (cubic)

Nb. of spots in detector: ~40

Simulated "complete" Laue pattern Single crystal UO2 (Large cubic unit cell)

Nb. of spots in detector: ~160

Simulated "complete" Laue pattern Single crystal ZrO2 (monoclinic)

Nb. of spots in detector: ~500

*Detector at 70mm from the sample surface

J.S. Micha et al, Laue Microscopy - New Opportunities in Diffraction Microscopy 8-11 January 2024 ESRF Grenoble France

Al-based Laue pattern indexing: complexity

Simulated "complete" Laue pattern Polycrystalline UO2 (5 grains) (Large cubic unit cell) Simulated "complete" Laue pattern Polycrystalline ZrO2 (5 grains) (monoclinic)

Nb. of spots in detector: ~230

Nb. of spots in detector: ~800

Nb. of spots in detector: ~2600

- > In reality, we also have photon noise/ dead pixels/ saturated peaks on the detector (also detector efficiency)
- > Also the intensity of Laue spots for grains diffracting underneath the surface grains will not be the same

J.S. Micha et al, Laue Microscopy - New Opportunities in

Al-based Laue pattern indexing: extracting Laue features for training

Ability of the neural network learning depends strongly on the applicability of the feature it is dealt with.

Angular space is more meaningful in Laue

Simulated Laue Pattern for single crystal Cu

Angular distribution for (55-5)

\rightarrow Angular distance distribution is used as input for the Neural network.

Al-based Laue pattern indexing : an optimized Deep Feed Forward model

A simple NN architecture \rightarrow Faster prediction

J.S. Micha et al, Laue Microscopy - New Opportunities in Diffraction Microscopy 8-11 January 2024 ESRF Grenoble France *Purushottam raj purohit R.R.P, et al. "LaueNN: Neural network based hkl recognition of Laue spots and its application to polycrystalline materials".." Journal of Applied Crystallography 55, no. 4 (2022).

Al-based Laue pattern indexing : an optimized Deep Feed Forward model

> J.Data augmentation: Gaussian opise and disappearance of spots (or partial Exaue patterns) based on their energies

*Purushottam raj purohit R.R.P, et al. "LaueNN: Neural network based *hkl* recognition of Laue spots and its application to polycrystalline materials". "Journal of Applied Crystallography 55, no. 4 (2022).

Al-based Laue pattern indexing : an optimized Deep Feed Forward model

France

GaN NWs deposited on Si subtrate

GaN NWs deposited on Si subtrate

GaN NWs deposited on Si subtrate

Si- phase

Optical microscopy image

GaN-phase (grain 1)

J.S. Micha et al, Laue Microscopy - New Opportunities in Diffraction Microscopy 8-11 January 2024 ESRF Grenoble France

Polycrystalline Tungsten: validation of strain assessment

Key step for high resolution: geometry calibration

High strain resolution obtained by a fine calibration of the geometry ⇔ accurate location of point C wrt 2D detector pixels plane array

Use of optical microscope focusing plane

10⁻⁴ resolution on scattering angles, absolute strain and absolute lattice parameters if scattering is close to point C within 10 μm along the beam

Degraded resolution if depth parallax: 10⁻³ for 75 µm depth uncertainty

10⁻⁴ resolution for:

- Objects at surface:
 - High absorbing material
 - Thin films
- Controlled depth of scattering process:
 - Prior knowledge (multilayer, ...)
 - Experimentally determined (3D Laue)

Better resolution on strain gradient than on absolute strain

Applications

In situ !

Applications

Applications

Ceramic paste/Pt heater resistor 50 K/min PEEK, Be Dome Air, O_2 , vacuum

Collab. R. Guinebretière's group IRCER, Limoges, HotMIX project)

Furnace

R. Guinebretière et al, J. Appl. Cryst. (2022) **Experimental premiere >1500K , calibration without microscope** R.R.P. Purushottam Raj Purohit et al, submitted to J. Appl. Cryst. **Strain distribution evolution with T** D. Fowan et al, in preparation

Microscopy Imaging without indexing

X ray detector: ROI counters

- 2D: Mosaic

70

60

50

40

30

20

10

- Scalar: max, mean, maxpos 📅

Fluorescence map

Peaks lists dataset peak existence, correlation, factorization,...

Multi-ROIs maxpos

60

50 -

40 -

30

20

3D Laue Microscopy: principles

Depth resolution: simple triangulation of the scattered intensity

S ntensity,

Improvements:

- Transmission function of wire
- 3-5 wires in parallel -

Collab. C. Kirchlechner's group (MPIE, KIT), Germany, XmicroFatigue project

3D-µLaue : data collection and analysis

Collab. C. Kirchlechner's group (MPIE, KIT), Germany, XmicroFatigue project

Energy measurements: full strain/stress tensors

Rotating diamond transmission filter

Energy resolution:

Intrinsic HR from crystal diffraction (monochromator, crystal analyser): some 10⁻⁴

Much Less resolution for solid state detector (punctual SDD, 2D pnCCD): ~ 10^{-2} (broadening) < 10-3 (average energy dsitribution) HR from dev. Strain by assuming $\sigma_{zz} = 0$ (at surface). Suited for Thin film 2D map

µLaue Diffraction | energy fine measurements using rotating transmission diamond filter | Full Stress

"Inverse" monochromatic diffraction The Rainbow filter technique

µLaue Diffraction | energy fine measurements using rotating transmission diamond filter | Full Stress

"Inverse" monochromatic diffraction The Rainbow filter technique

µLaue Diffraction | energy fine measurements using rotating transmission diamond filter | Full Stress

"Inverse" monochromatic diffraction The Rainbow filter technique

Conclusions µLaue @ ESRF

Microstructure and Metrology characterisation tool

- Open to broad scientific community
- High angular resolution
- ✓ Few 100s nm spatial resolution
- ✓ In situ experiments (elasticity plasticity), signal with large strain
- ✓ Addons mapping measurements: 3D, full strain/stress, element concentration

Current & future challenges

Next proposals call: March42023 Contact | infos | free tests micha@esrf.fr

- ✓ LaueMAX Upgraded instrument (flux X 10, beamsize 150 nm) coming soon Spring 2024
- ✓ use of AI assistance (DIADEM project): data collection (detect and select high quality data)
 - data analysis (peaks overlap, peaks subgrains splitting)

Crowded Laue patterns (multiple grains, twins) Peak Shape analysis (Defects) Infer topography (depth, GB, 3D shape)

