BM01

Functional materials and devices studied in their working environment

APPLICATIONS

In-situ electrochemistry

Battery research

Metal Organic Frameworks

In-situ measurements of guest uptake and release processes

Photovoltaic materials

Crystal, powders, thin films – phase stability, cycling, strain engineering

Ferro electrics

In-situ synthesis, thin films and crystals, in-situ electric field domain manipulation

Structure – property correlations for a broad range of materials

INSTRUMENTATION AND EXPERT SUPPORT

Single crystal diffraction

Chemical crystallography, Diffuse scattering, High-resolution mapping of reciprocal space

Powder diffraction

Structural analysis, high resolution and high intensity measurements, fast in-situ data collections

Diffraction from surface

Mapping of reciprocal space and texture, in-depth scanning

COMING IN 2022

Small angle diffraction in combination with all above techniques

SCIENTIFIC HIGHLIGHTS

Role of solvent-host interactions that lead to very large swelling of hybrid frameworks / **Science 2007**

Hidden diversity of vacancy networks in Prussian blue analogues / **Nature 2020**

Metal-organic magnets with large coercivity and ordering temperatures up to 242°C / **Science 2020**

Thermal unequilibrium of strained black CsPbl₃ thin films / **Science 2019**

FOR MORE INFORMATION dmitry.chernyshov@esrf.fr

BM31

Materials chemistry studied by operando multi probe synchrotron techniques

APPLICATIONS

Operando heterogeneous catalysis

Multi probe time and space resolved studies

Operando fuel cell, batteries and photo-electrochemistry

Porous materials

Sorption-desorption and separation processes

Material synthesis

From chemical template formation through nucleation to nano-crystalline phase

Environmental chemistry

INSTRUMENTATION AND EXPERT SUPPORT

Combined EXAFS and Powder diffraction

Structure, stability and performance on the same sample under the same conditions

EXAFS and XANES

Valence states and coordination environment, fast and in-situ on multiple edges

Powder diffraction

Structural analysis, high resolution and high intensity measurements, fast in-situ data collections

COMING IN 2022

Total scattering/PDF in combination with all above techniques

SCIENTIFIC HIGHLIGHTS

The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol / Nature Communications 2020

Selective, Fast-Response, and Regenerable Metal-Organic Framework for Sampling Excess Fluoride Levels in Drinking Water / Journal of the American Chemical Society 2019

Bismuth vanadate and molybdate: Stable alloying anodes for sodium-ion batteries / **Chemistry of Materials 2017**

Polymer Lamellae as Reaction Intermediates in the Formation of Copper Nanospheres as Evidenced by In Situ X-ray Studies / **Angewandte Chemie International Edition 2020**

Molybdenum Carbide and Oxycarbide from Carbon-Supported MoO₃ Nanosheets: Phase Evolution and DRM Catalytic Activity Assessed by TEM and in situ XANES/XRD methods / Nanoscale 2020

FOR MORE INFORMATION wouter@esrf.fr