

Linux/PCI: The new ESRF beamline control system

> Alejandro HOMS-PURON BLISS Group ESRF

Talk outline

- Introduction
- Bus couplers
- Prototype setup for ID31
- New features
- Conclusions

BLISS

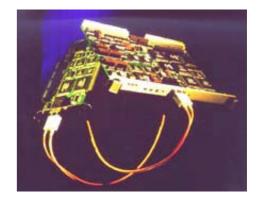
Introduction

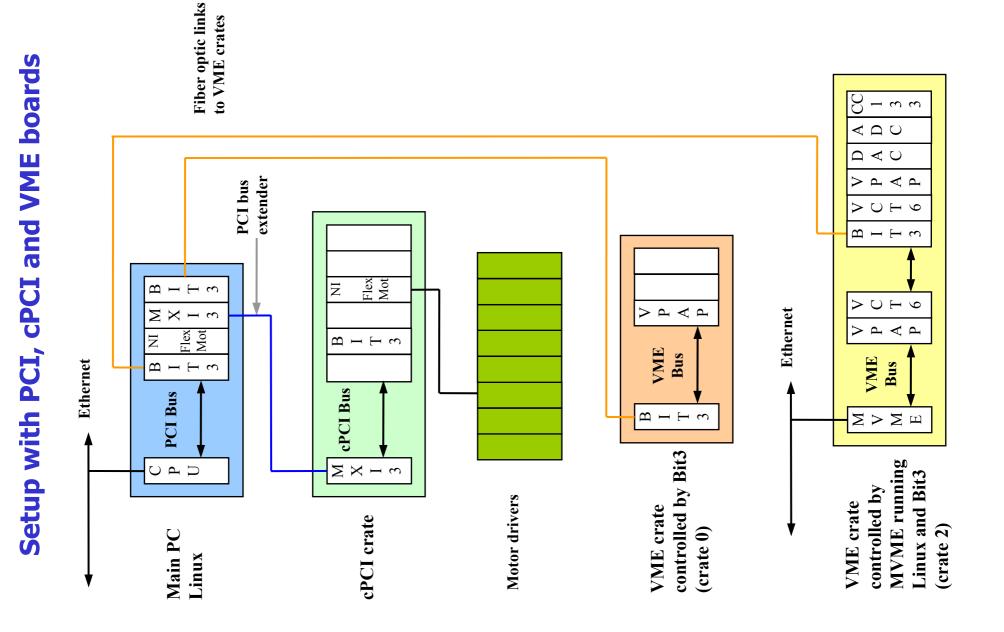
ESRF today

VMEbus Motorola 68000 33 MHz / OS9 10 MBps Ethernet

Modernization project PCI & cPCI

Pentium III 1 GHz / Linux


100 MBps Ethernet


Bus couplers

PCI – VME Bus coupler (Bit-3) SBS Model 620, Fiber optic link Transfer rate: 35 Mbyte/s (DMA)

PCI – cPCI Bus Extender (MXI-3) NI PXI-PCI8330, Cooper link Transfer rate: 84 Mbytes/s

Instrumentation control setup connecting PCI, cPCI & VME busses

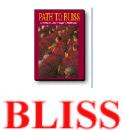
Industrial PC and cPCI crate

VME crates controlled by PCI & MVME Linux

General features

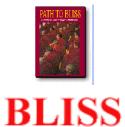
Scalable functionality:

- Direct access to boards from SPEC (very fast)
- SPEC + device servers (TACO) on the same PC
- SPEC controlling remote device servers (network traffic)


Hook facility

- Buffer for storing the experiment data
- Run-time configurable
- VME, PCI & cPCI boards included
- Kernel mechanism ⇒ good-performance:
 - 30 50 µs interrupt latency time
 - 3 µs VME single access time
- Triggered by software or hardware

VME features


- No limitation in the number of boards per crate
- Full access to VME board functionalities
- VME crates can be switched Off/On, and boards can be added/removed
- Same code works on Intel x86 and Motorola
 68k

PCI boards Enumeration

Problem:

- Plug & Play ⇒ boards enumerated at boot time
- Most of the boards are indistinguishable
- Board added/removed ⇒ enumeration changes
- This also applies to VME crates!

PCI boards Enumeration

Solution:

To keep track the position of the boards in the bus

Clerker	num Configuration Tool ::::::::::::::::::::::::::::::::::
PCI Tree: PCI Host - Chassis 0 I: NI_7344 (0) II: NI_7344 (0) II: NI_7344 (0) II: NI_7344 (0) II: NI_7344 (1) II: NI_7344 (1) II: NI_7344 (1) II: SBS_Bit3 (2)	Suggestions: Enable board SBS_Bit3 in chassis 0 slot 6, logid=1 Change slot of SBS_Bit3 in chassis 1 from slot 7 to 8
G: SBS_Bit3 (1)	Apply
Errors:	
<pre>Board(s) in the PCI bus not found in the config file: SBS_Bit3, chassis.slot: 1.8 Board(s) in the config file not found in the PCI bus: SBS_Bit3, chassis.slot: 1.7, logid: 2, conf_file_line_nr: 10</pre>	

Hook device server

- Define a model for exporting channel and/or board devices
- Optimize local calls

Conclusions

- The project supports the VME/PCI transition at the ESRF
- New features will allow faster experiments and more flexible configurations
- Linux kernel provides the necessary functionality and stability