$\overline{\mathbf{E S R} \mathbf{F}}$ | The European Synchrotron

Status of the High Power Laser Facility on ESRF/ID24

Nicolas Sévelin-Radiguet

 nicolas.sevelin-radiguet@esrf.fr

ACO-CHOCOLAS

Groupe de recherche CRIS

DYCOMAX

Extreme conditions

for geophysics and planetary science extra solar planets, warm dense matter

Dynamic behavior of matter and materials under high strain rates

impacts, spallation, materials synthesis, plasticity, phase transitions kinetics, nucleation...

HIGH POWER LASER FACILITY PROJECT

HPLF-I (2018-2021) :

Couple a 100 J ns-shaped laser to XAS on ID24
Front End commissioning and first experiments performed in 2018.

HPLF-II (from 2023) EBS Beamline program To be approved
Extend to XRD, XRI, XES on ID23 Laser upgrade to 200 J IR / 140 J Green

HPLF PROJECT PHASE I TIMELINE

Laser-induced dynamic compression coupled to XAS on ID24

2017: Phase I (2018-2021) approved, CFT for a 100 J ns-shaped laser awarded to

2018: Delivery and commissioning of the laser front end Experiments 2018
See talk from K. Voigt and A. Amouretti this afternoon at 2:00 PM (UTC+01:00)
$15 \mathrm{~J}, 10 \mathrm{~ns}$
arizor
HELMHOLTZ
$\left\lvert\, \begin{aligned} & \text { ZENTRUM DRESDEN } \\ & \text { ROSSENDORE }\end{aligned}\right.$
ROSSENDORF

2019-2020: EBS upgrade - Infrastructure realization ID24 upgrade for EBS and HPLF

2021: Full HPLF laser delivery, ID24 re-commissioning 100 J ns-shaped laser, transport, interaction chamber

Beamline ID24

ID24 DCM/ED for EBS Energy Dispersive Branch

ID24-ED remains unchanged

Target experiments on ID24-ED

- Dynamic compression
- Pulsed magnetic field
- 2D/3D hyperspectral maps
- EBS is expected to deliver up to a factor 3 increase in flux at high energies
- A factor 5 at low energy ($5-7 \mathrm{keV}$) is expected as the beamline will be operated windowless

Additional items:

- New X-ray mirrors
- Vacuum refurbishment
- Upgraded version of the fast XH detector
- New control system (BLISS)
- Graphical User Interfaces
- Optimized sample environments

ENERGY DISPERSIVE GEOMETRY FOR XAS

- Bent Si crystal with elliptical shape \rightarrow energy-dispersed X-ray fan
- Position Sensitive Detector: \rightarrow a few 100s of eV simultaneously
- Fast-response synchronized PSD:
\rightarrow single-shot/single bunch XAS

Dispersive $(\theta-2 \theta)$ geometry where θ depends on the X-rays energy \rightarrow sample and sample environment move with X-ray energy
poly-
chromator
$8^{\circ} \equiv 28$
keV
poly-
chromator
$47^{\circ} \equiv 5$ keV

LASER DRIVE

Premiumlite Glass 100 J @ 1 ω

- Temporal shaping: 4-15 ns
- SSD
- 1 shot / 4 minutes
- Top-Hat profile

Upgradable to 200 J
6.5 m

Possibility of SHG

Synchronization from SR RF using ESRF-developed electronics (White Rabbit based), jitter from X-ray pulses < 50 ps

LASER DRIVE

@ Amplitude facility

[^0]
LASER DRIVE

Preliminary characterization at Amplitude's factory

52.3 J @ 0.1 Hz
1.7% RMS over 480 shots (80 min)

Near field @ output with SSD

10 ns squares

- Rise time ~ 300 ps
- ns contrast > 10^{5}

- Ability to switch easily from one to the other

XH FAST DETECTOR

Ge sensor:

- 1024 strips ($50 \mu \mathrm{~m}$ pitch)
- Back illuminated
- Two guard-rings

Improved cryostat:

- Ge sensor @ 100 K
- Front-end electronics (~12W) @ 230 K

Front-end + DAQ designed by
Science \& Technology Facilities Council

- Variable preamplifier gain.
- Minimum integration time: 100 ns
- Readout time: $2 \mu \mathrm{~s}$
- Repetition rate: $2.8 \mu \mathrm{~s}$

Borri M. et al., NIMPR-A, 988 (2021) 164932

4-bunch

MIRION
TECHNOLOGIES

2 in-vacuum microscopes:

- Upstream, larger FoV (color)
- Downstream, higher depth resolution (monochrome)

EUCALL-compatible target holder

[^1]
INTERACTION CHAMBER

Viewports available for

SHOCK DIAGNOSTICS COLLABORATION

－ 1 VERDI 5W from CEA
－ 1 Line VISAR from U．Oxford

Courtesy of D．Eakins

diode

etalon stage（LTS）
multi－mode fibre

「゙ニロス
HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

PARAMETERS

HPLF adjustable parameters:

X-rays

- X-rays energy: 5-28 keV (Day-1: 5-11 keV)
- X-rays pulse: $\approx 100 \mathrm{ps}$ FWHM (fixed)
- X-rays spot: $10 \times 100 \mu \mathrm{~m}^{2}$ down to $5 \times 5 \mu^{2}(\mathrm{H} \times \mathrm{V})$ (energy dependent)

Laser

- Laser energy: 1-100 J (@ 1053 nm) (Day-1: 50? J max)
- Laser temporal shape: 4-15 ns (flat top, adjustable, Day-1: rectangular only)
- Laser spot size on target: $\varnothing 100,250$ and $500 \mu \mathrm{~m}$ HPP
- Rep. rate: single shot up to 1 shot / 4 min
- X-rays/Laser delay adjustable
- Users' targets!
\rightarrow Round table tomorrow at 4:30 PM (UTC+01:00)

FUTURE EVOLUTIONS

Laser upgrades

- Energy up to 200 J @ 1ω
- Second Harmonic: 140 J @ 2w
- Deformable mirror

Shock diagnostics

- VISAR
- A second Line-VISAR (ideally at a different wavelength)
- A pulsed laser for VISAR

VISAR and SOP are crucial to determine P/T conditions

X-rays

- XRD, XRI and XES on a second beamline (HPLF-II)
\rightarrow Round table tomorrow at 4:30 PM (UTC+01:00)

ACKNOWLEDGMENTS

G. Berruyer, D. Bugnazet, T. Buslaps, S. Chazalette, C. Clavel, D. Lorphèvre, O. Mathon, S.

Pascarelli ${ }^{1}$, S. Pasternak, F. Perrin, N. Sévelin-Radiguet, R. Torchio², F. Villar + many others
${ }^{1}$ Now at Eu-XFEL
${ }^{2}$ Scientist in charge

C. Pépin, F. Occelli, A. Sollier

D. Eakins

University of
OXFORD
~izar
helmholtz Zentrum DRESDEN ROSSENDORF
D. Kraus ${ }^{3}$, A. Schuster, K. Voigt, M. Zhang
${ }^{3}$ Now at U. Rostock
A. Amouretti, A. Boury, F. Guyot, G. Fiquet, M. Harmand

Questions?

[^0]: Page 12 I High Power Laser Facility on ID24 I DyCoMaX 2021 I Nicolas Sévelin-Radiguet

[^1]: $.0000000000^{\circ}$
 000000000

 - 000000000
 - 00000000

 OOOOOOOOO 0
 .000000000
 0000000000
 O O O O O O O 0
 0000000000
 000000000

 - O O O O O O O O 0 。

