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“Complex Dynamic Response” is all the messy and complicated 
physics we don’t have great models for (yet)

§ Standards in the field show 
where our strengths lie: 
—Al, Cu, Ta

§ Easy to 
—Machine
—Measure/characterize 
—describe with conservation equations 

and bulk variables

§ Contrast: all the fun, cool stuff 
we don’t understand
—Chemistry, Kinetics, Temp.
—Heterogeneous materials
• Grains, additive manufacture

—Strength, shear, failure

§ Probing these topics means we 
need inside knowledge
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Most models are built around idealized, bulk materials. Most materials 
are not ideal. Beam lines are great tools for improving our understanding!
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§ Metamaterials
—Additive manufacturing

§ Foams

§ Aggregates 
—concrete, raisin bran, most rocks

§ Fibers
—Felts, fiberglass, woven materials

Granular systems are a special case of heterogeneous media

Knowledge of bulk material does not mean we can predict its 
discontinuous forms’ response

Force chain, shown in 
plastic disks Behringer et al

Allende 
Britannica.com
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Granular response is complex; current models are inadequate

Perry et al, 2015

Small changes in initial properties lead to 
large changes in response
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Figure 15. Hugoniot results from the P-l model (dashed lines) compared to
experimental results for granular and consolidated Ta2O5.

Ko =
Er

3(1�2n)(1�n2)
(1)

and assuming a value of 0.2 for n , which is a reasonable assumption for most ceramics, we find a value of
86.8 GPa for the bulk modulus Ko. From this, a value for the bulk sound speed of 3.3 km/s is obtained. This
is used in the common linear Us – up relationship of

Us = co + sup. (2)

Although co is not, in general, equal to the bulk sound speed, it is often very close to that value making it a
reasonable assumption here. It is necessary to specify the thermal behavior of the material; here, that is done
through the Grüneisen parameter G, which is assumed to have the form

G(P) = Goe�( P
Ko )

n
+G•(1� e�( P

Ko )
n
). (3)

Values of 1.15 and 0.5 are assumed for Go and G•, respectively, and a value of unity is used for n. This
gives a gradual decay of G from 1.15 at ambient conditions to 0.5 at high pressures, the latter based upon
the limiting case for very high pressures. As can be seen in Fig. 15, the model constructed in this manner
fits the data quite well. The model results shown are not quite ”blind” in that the value of G was adjusted
slightly to fit the data, but in some cases the ambient value might be available. If it were not, an assumption
of Go = 1 would be reasonable and, in this case, not much different from the results shown.

While the P-l results agree well with the Z and 2-stage results, there are additional data for Ta2O5 aerogel
from the OMEGA laser facility [Miller et al., 2007]. These experiments were done for material with initial

28

Vogler et al., SAND2011-6770 
Ta2O5 Hugoniots of different initial density with 
best P-l fits. 

Grain scale data are missing, and we need 
them to advance predictive ability.

(a)

(b)

Figure 1. SEM micrographs of Ta2O5 from Cerac showing (a) grain structure
and (b) sub-grain structure.
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(a)

(b)

Figure 2. SEM micrographs of Ta2O5 from American Elements showing (a)
grain structure and (b) sub-grain structure.

11
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Key questions about heterogeneous materials remain

Grain Properties

Grain Arrangement

Grain Dynamics

§ Scatter sources?

§ When are data good/trusted enough? 

§ What’s going on inside?

§ Can we avoid measuring every single form?

We need data to build internal micromechanical 
models to combine with bulk material models
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Vertical and radial packing variation violate assumptions 
made in bulk measurements

§ Not uniform

§ How thick is a boundary? How big does a sample need to be to not be dominated by 
boundary effects?

§ If the sample is small enough, it will be all boundary and more uniform. Is this preferable? 
Sometimes…

GSECARS computed tomography
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Vertical and radial packing variation violate assumptions 
made in bulk measurements

§ Not uniform

§ How thick is a boundary? How big does a sample need to be to not be dominated by 
boundary effects?

§ If the sample is small enough, it will be all boundary and more uniform. Is this preferable? 
Sometimes…

GSECARS computed tomography

We need to look at this variation in larger, 
more representative samples
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Larger samples also show lots of variation. We need to determine 
how much packing variation is present

Cracks
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In this measurement, crack volume can be up to 7%

ALS Computed Tomography



10
LLNL-PRES-xxxxxx

Far Field Diffraction Data

X-Ray Radiographs

Micro 
Computed 

Tomography

Grain Position, 
Lattice 

Orientation, and 
Lattice Strain 

Analysis

Combined Topology and Stress 
Analysis gives a rich data set

CHESS (Cornell U.)
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Imaging and diffraction setups constrain experimental design

Al block

Sample

U
impactor

Scintillator

To beam farm 
and cameras

X-ray beam
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Mirror

DCS setups 
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IMPULSE imaging setup at DCS
Crum et al., J. Appl. Phys. 125, 025902 (2019); 
https://doi.org/10.1063/1.5057713

Dynamic imaging experiments are designed to be close to 1D

Superglued 
region

Imaged region
(~1 x 1 mm)
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Detailed data are extracted to 
improve models and analysis

§Reconstructed CT of sample

§ Segmented to find sample 
properties
—particle size distribution
—thickness averaged attenuation

of the sample.

§Used to inform models and 
calculations



14
LLNL-PRES-xxxxxx

Fracture and compaction response differ in wet vs. dry media

§ X-ray phase contrast imaging of shocked glass spheres

§ Deformation mechanisms of dry and water-saturated 
samples are not the same
—consistent with shock recovered samples

§ We update our models

WET

DRY

DCS / IMPULSE/Sector 32

using these data
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465 m/s impactor

Packing variation seeds variation in compaction front in sand

Length scale of variation depends on 
analysis method. Density variation finds 

a length scale of ~30 grains. Local 
filtering reduces this to a few grains.

Mean density profiles of middle 
region; red = density compaction front

middle region = between black bands

DCS / IMPULSE

compaction front (cyan)
Sample-polymer interface (blue)
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Simulation results showing thickness-averaged density in the x 
- y plane for the granular material impacted at 465 ms-1. 

Packing variation seeds variation in compaction front

Simulation results qualitatively 
agree but can be improved 

DCS / IMPULSE
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Identifying shock boundaries and densities can be done with 
machine learning (ML)

§ As throughput increases, analysis 
becomes more time consuming

§ Identifying shock boundaries in images 
is a challenge
— Want to avoid subjective assignment
— Can be slow

Machine learning can be challenged to 
determine if X is ball or table

Lund et al in press

DCS / IMPULSE
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We apply the ML algorithm to train each image and find boundaries

Training regions

Original Image

Lund et al in press

DCS / IMPULSE
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We apply the ML algorithm to train each image and find boundaries

Training regions Assigned regions

Original Image

Lund et al in press

DCS / IMPULSE



20
LLNL-PRES-xxxxxx

Repeating for each image, we can find the boundary evolution

Frame 1
Frame 2 Frame 3

Blue = region of uncertainty
Yellow = boundary

Lund et al in press

DCS / IMPULSE
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Out-of-plate deformation must be accounted for; we built 
new models to do so

DCS / IMPULSE
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§ We need to understand/characterize samples at detailed level
— Not just bulk EOS/strength, but also local variations in density and network
— Local structures may imprint
— Wetting (water or container) changes both contact type and friction

§ Analysis methods can give different results
— When are we over-filtering?

§ Multiple length, pressure, and time scales apply
— At grain/grain or grain/liquid contact
— Within grain
— Between grains/across network
— At boundaries

§ Improving model capabilities for packing, local stress-strain, friction, and strength has 
led to better models that can capture some of the response

Conclusions
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