
Multilayer roughness and image formation in the Schwarzschild objective

S. Singh, H. Solak, and F. Cerrina
University of Wisconsin, 3731 Schneider Drive, Stoughton, WI 53589

(Presented on 19 October 1995)

We present a study of  the effect of  multilayer surface roughness-induced scattering in the image
formation of the Schwarzschild objective (SO) used in the spectromicroscope MAXIMUM.  The two
mirrors comprising the SO are coated with Ru/B4C multilayers that have a peak reflectivity at
130 eV.  We had long observed that a diffuse x-ray background  surrounds the focused x-ray spot.
The spatial resolution remains at 0.1 µm in spite of this.  However, since a significant fraction of the
flux is lost to the background, since too large an area of the sample is illuminated, and since the S/N
ratio is degraded,  the origins of this effect merit investigation.  This diffuse background resulting
from x-ray scattering at the surface of the mirrors was mapped out using bidirectional knife edge
scans.  Complementary surface roughness simulations were carried out with the ray-tracing program
SHADOW.  AFM experiments were also done to directly measure the surface roughness and power
spectrum of representative multilayers.  Following curve fitting, it was possible to classify Gaussian
components in both the measured and simulated  profiles as arising from scattering occurring at
either the convex  primary mirror or the concave secondary mirror.  Together with geometrical
analysis, these techniques permitted us to track the image formation process of an actual optical
system in the presence of surface roughness.  © 1996 American Institute of Physics.
I.  INTRODUCTION

Surface roughness and the resulting scattering and loss of
flux are important issues in x-ray optics.  The quality of
substrate surfaces is essential not only to grazing incidence
metal surface mirrors but also to normal incidence multilayer
mirrors such as those comprising the Schwarzschild objective
(SO) used in our x-ray photoemission spectromicroscope
MAXIMUM.  Multilayer coatings may be roughened at the
interfaces because of substrate roughness.  A variation in the
layer thicknesses can introduce a phase change and affect the
Bragg reflection rules.  It has been shown that multilayer
coating can tarnish1  over time, leading to a surface
roughening.  This too may introduce a surface phase shift in
the reflected light, resulting in yet more scattering.
Regardless of its place of origin in the multilayer coating,
undesired scattering from the mirrors causes a significant
fraction of the x-rays incident on the SO to not be focused;
instead, this scattered light forms a halo about the focused
spot.  This is of concern since maximum flux at the focus is
needed for microscopy and also because this diffuse
background results in the collection of a photoelectron signal
from an area larger than the area of interest illuminated by the
focused x-rays.  This affects the local energy resolution of
our instrument and also decreases the signal-to-noise ratio,
although it does not degrade MAXIMUM’s to date spatial
resolution of 0.1 µm.2,3  In this paper we present our study
of roughness-induced scattering in the SO, including
measurements and computer simulations.

II.  EXPERIMENTAL

MAXIMUM uses a multilayer coated Schwarzschild
objective to obtain a small x-ray probe.  The SO set used in
this experiment was coated with Ru/B4C to reflect photons of
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an energy hν = 130 eV.  In our system, undulator radiation is
monochromatized by a SGM (spherical grating mono-
chromator) and focused onto a pinhole.  The SO forms a
20 times demagnified image of the pinhole in its image plane.
Figure 1 shows a schematic of the objective mirrors and
image formation by the SO.  Numerical values for the design
parameters of interest of the system are listed in Table I.  A
spot size of 0.5 µm was attained at the focus with the 10 µm
pinhole used.

In this study, a knife edge was scanned across the beam,
like in the Foucault test used to align the microscope
immediately previous to this experiment.  Unlike in the
Foucault test setup, however, the microscope was put out of

FIG. 1.  SO geometry and image formation.

TABLE I.  Schwarzschild objective design parameters.

Object distance (do) 1298 mm
Image distance (di) 120.78 mm
Distance between mirrors (t) 55.498 mm
Primary mirror radius of curvature 66.336 mm
Secondary mirror radius of curvature 117.253 mm
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focus in order to sample more of the scattered light.  In
addition, MotorMikes were used instead of piezos in order to
move the knife edge over a much larger range to obtain the
distribution of scattered light around the focal spot.  The
unblocked portion of the light was viewed using a conductive
phosphor screen in conjunction with a chevron MCP
(microchannel plate) detector.  Pulse counting electronics
were used to collect the signal as a function of knife edge
position.  Knife edges in both the horizontal and vertical
directions were used.  However, due to space restrictions on
the scanning stage, the scan along the horizontal direction
with a vertical knife edge did not cover the entire range of the
scattered radiation.  The results from both knife edges looked
similar.  Numerical calculations, the results of which are
presented here, were performed on the complete scan.

Figure 2 shows the scan in the vertical direction performed
with a horizontal knife edge.  The jump in the center
corresponds to the specularly reflected focused light.  The
contribution from the specular light appears as a discontinuity
on the otherwise smooth variation due to the diffuse
background.  Hence it is possible to accurately remove that
contribution to obtain a distribution attributable only to the
scattered light.  This is the lower curve in Figure 2 and
represents the integral of the scattered x-ray intensity over the
unblocked half plane defined by the knife edge.  The intensity
itself in one dimension can be obtained by taking the
derivative.  Figure 3 shows the result of differentiation after
11 point smoothing.  The contribution of the specularly
reflected light can be extracted similarly by taking the
difference of the derivatives of the line scans shown in
Figure 2.

FIG. 2.  Data from knife edge scan in the vertical direction, before
and after removing the specular component.
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FIG. 3.  Experimental scattered light intensity.  Derivative of focus-
removed line scan after smoothing and fitting with two Gaussian
functions.

The specularly reflected light curve was integrated to
obtain its contribution to the total intensity.  The scattered
light intensity in Figure 3 could be fitted with two Gaussian
functions using a least squares algorithm.  The centers were
initially allowed to vary during fitting and were found to be
very close, indicating that that the difference comes simply
from statistical variation.  Since there is also no physical
reason for the centers not to be coincident because the
scattering is an average process, the centers of the two
Gaussians were forced equal during the fit.  All numerical
parameters are summarized in Table II.  A χ2 of 0.95 was
obtained for the multiple Gaussian fit when using the level of
high frequency variation in the data (in the tails) as a measure
of error.

AFM (atomic force microscope) experiments were carried
out on a witness sample:  a Si wafer on which the multilayer
pairs of Ru/B4C were RF sputter-deposited at the same time
as on the SO.  A TopoMetrix instrument was used.  Figure 4
shows a 200 nm × 200 nm topographic image acquired in
contact mode.  The image has been leveled to remove piezo
movement artifacts.  An RMS surface roughness of 1.0 Å and

TABLE II.  Numerical parameters for the specularly reflected and
scattered light intensities with the microscope out of focus.  A 2
Gaussian fit was done for the scattered light intensity.

Parameters Specular Scattered
Peak R Peak S1 Peak S2

Center (µm) N.A. 4015.1 4015.1
2σ (µm) N.A. 519.6 3682.0
Area (A.U.) 288350 199819 504734
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FIG. 4.  200 nm × 200 nm AFM contact mode image of witness
sample of Ru/B4C.

an average height of 6.0 Å were measured.  These parameters
ranged from 0.9 to 2.6 Å for the RMS roughness and from
4.4 to 9.1 Å for the average height on four different areas of
the sample surface.  The power spectral density (PSD)
computed from a 1-D surface profile of the area depicted in
Figure 4 is shown in Figure 5.  This PSD does indeed
approximate a Gaussian function (with a σ of 64457 cm-1)
but is plotted here on a log-log scale to bring out the high
frequency features.  It may be used as a representative PSD
of the multilayers themselves, without the effect of any
roughness present on the uncoated Schwarzschild objective
mirrors themselves before the multilayer coating was
deposited.  AFM experiments on unoxidized Mo/Si multi-
layers used for the SO in the past indicated a PSD with a σ of
75000 cm-1 and an RMS roughness of ~ 10Å.

III.  PHYSICAL MODEL

The imaging properties of “rough” surfaces have been
studied numerous times.4,5  Many of the same techniques
can be applied to optics coated with multilayers.  In general,
two types of roughness scattering processes may be separated
out.  Depending on the type of intra- and interlayer
correlation, the roughness may affect both specular
reflectivity and scattered light.  While vertically correlated
roughness does not affect the integrated reflectivity much,
any type of roughness will contribute to the scattering of
radiation away from the specular reflection.  In the case of
microscopy, scattering from the multilayers contributes a
halo around the central focal spot of the microscope.
Carniglia6 applied scalar scattering theory7 to multilayers
and calculated reflected and transmitted scattering at the
various interfaces in the small roughness limit.  A multilayer
stack model was used for various degrees of interface
correlation in an approach taken by Elson et al..8  A vector
scattering theory7  was used in conjunction with an
experimental PSD function to make predictions of the
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FIG. 5.  Experimental power spectral density function computed
from AFM surface profile.

angular distribution of scattered light.  From modified Born
approximation approaches9-11 to a kinematical approxima-
tion treating imperfect multilayers12 to efforts centered
around power spectral density function,13,14 much has been
done.   Harvey15 uses a version of the PSD approach and
defines a surface power spectral density filter function for the
multilayer surface.

In our case, we use a standard treatment based on the
power spectrum of the surface error to represent the
scattering process.  This use of surface transfer functions
(such as the PSD) to model roughness induced scattering has
been shown to be an accurate formulation of the problem
well suited to numerical calculations.15  Briefly, the proba-
bility of a ray’s being elastically reflected is computed
according to scalar scattering theory and is given by
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where Rscat is the intensity of the scattered light, Rtot is the
total intensity, ∆ is the RMS roughness, θi is the incidence
angle, and λ  is the wavelength.16  The scattering angle is
obtained by using the power spectrum of the roughness
profile.  Although experimental PSDs can be used, often
Gaussian approximations work very well.  The validity of
this approach is verified a posteriori by the good agreement
between theory and experimental observations, namely AFM
results in our case.
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IV.  COMPUTER MODEL

The ray-tracing program SHADOW can calculate the
effect of surface roughness-induced scattering on the image
formation of an optical  system.17  It has been used success-
fully to model real mirrors.18  We used SHADOW to model
the effects of surface roughness in the Schwarzschild
objective.  The power spectral density function and root-
mean-square roughness are used to determine the distribution
of scattered light at the image.  The rough surface is modeled
by a distribution of elementary small gratings with random
rulings.  A ray incident on the surface is scattered according
to the local ruling.  Since SHADOW is a stochastic ray-
tracing program, a calculation is done for each ray and a new
random grating is recalculated.  The normalized two-
dimensional PSD is used as a probability distribution
function (PDF) from which a cumulative distribution
function (CDF) is computed.  The CDF is used along with a
random number generator to select a pair of spatial
frequencies in the x and y directions distributed according to
the PSD chosen by the user.  This pair of frequencies is used
to construct the scattering vector G.  Thus the PSD
determines the angular distribution of the scattered light.

Since the RMS roughness affects only the percentage of
rays scattered, a realistic ∆  of 15 Å was chosen for both
mirrors.  A Gaussian PSD was defined for a chosen spatial
frequency standard deviation σf.  Each iteration was carried
out for 5000 rays and 500 iterations were typically carried out
for each run.  The specularly reflected rays were blocked by a
stop and only the scattered rays were analyzed.  A typical run

for realistic ∆ = 15 Å and σfp
 = σfs

 = 10000 cm-1 is shown

in Figure 6.  σfp
 and σfs

 are the spatial frequency σf’s for the

primary and secondary mirrors, respectively.  The intensity is
integrated in y to yield a 1-D distribution that can be fit with
two Gaussian functions for roughness on both mirrors.  It was
found that when the roughness is turned off on one of the
mirrors, the intensity can be fit with just one Gaussian, as
expected.  This suggests that the scattered light distribution of
a SO with two rough mirrors is a convolution of two
Gaussians.  The results of curve fitting carried out on
representative SHADOW simulations are shown in TableIII.
The last entry in TableIII  is particularly interesting in that the
σf’s for the primary and secondary mirror are different.  We
note that the ratio of the widths of the two peaks for this case
is 5.42 ; where it is 2.7-2.8 for all other SHADOW
simulations done for which the PSD σf’s were the same for
both mirrors.  This is true also for many simulations not
included here.  Figure7 shows the scattered light distribution
for the case where ∆ = 15 Å, σfp

 = 10000 cm-1 and σfs
 =

20000 cm-1.

V.  DISCUSSION

A ray incident on the SO can undergo different processes
both on the primary and on the secondary mirrors.  First, it
may be absorbed.  If it is not absorbed, it may be either
4  1996 American Institute of Physics 
FIG. 6.  Simulated spatial distribution of scattered rays at the image

plane for realistic ∆ = 15 Å and  σfp
 = σfs

 = 10000 cm-1.

TABLE III.  Gaussian fitting parameters for the scattered light
intensity computed by SHADOW for ∆ = 15 Å.

σfp
 (cm-1) σfs

 (cm-1) σS1 (µm) σS2 (µm) IS1
(A.U.)

IS2
(A.U.)

σS2 / σS1

10000 10000 621.9 1722.3 56552 31063 2.77

40000 40000 2485.6 6921.0 48833 26373 2.78

75000 75000 4641.0 13092.5 46917 24518 2.82

10000 20000 623.7 3378.9 79376 22846 5.42

σfp
 = 10000 cm-1 and σfp

 = 20000 cm-1.  This distribution looks very

similar to the experimental data shown in Figure3.

specularly reflected or scattered.  This may occur at either
mirror.  We identify as R those rays specularly reflected by
both mirrors.  Those reflected at the primary mirror but
scattered at the secondary are labeled as S  while those
scattered at the primary mirror but reflected at the secondary
are called P.  Rays scattered by both mirrors are labeled D,
for doubly scattered.  The diagram in Figure8 shows these
processes.  rp  (rs) is the reflectivity of the primary
(secondary) mirror.  kp (ks) is the probability that a ray that is
not absorbed  will be scattered.  Following the scheme in
Figure8, the relative strengths of the four components may
be written as

R : P : S : D = (1 – kp) (1 – ks) :

kp(1 – ks) : (1 – kp)ks : kpks

(2)

The reflectivities rp  and rs do not appear in the above
equation and hence have no effect on the distribution of light.
This fact allowed us to discard the effects of losses in the
SHADOW simulations.  It is interesting to note that,
assuming that both mirrors have equal scattering coefficients,
scattered light in the image plane will have equal
Rev.  Sci. Instrum. 67 (9), September 1996



FIG. 7.  Simulated scattered light intensity for ∆ = 15 Å, σfp
 =

10000 cm-1 and σfs
 = 20000 cm-1.

FIG. 8.  Tree showing different paths that a ray can take in the SO
system.

contributions from the two mirrors.  We can also deduce from
the above equation that for an N mirror system the relative
strength of specularly reflected light will be (1 – k )N

assuming a uniform scattering coefficient k for all mirrors.
This implies that losses due to scattering may quickly
become limiting in a multimirror imaging system.

As seen earlier, the distribution of scattered light measured
could be fit with two diffuse Gaussians.  We will show in this
article that the doubly scattered light has the shape and
intensity of the convolution of the two singly scattered
Rev.  Sci. Instrum. 67 (9), September 1996
components.  The ratio of widths of the two Gaussian
components S2 and S1 identified in the experimental data
was σS2/σS1 = 7.1.  Since the σ of the convolution of the two
Gaussians would be within ~1% of σS2, it was not possible
to resolve it separately.  We conclude therefore that the wider
Gaussian S2 shown in Figure 3 is a combination of two
scattered light distributions: that of light scattered only by the
secondary mirror (S) and that of doubly scattered (D) light.
The narrower Gaussian S1, then, is the distribution of light
scattered only by the primary mirror (P).

Now Equation 2 and the experimental results may be used
to estimate the scattering coefficients kp and ks for the SO.
Note that equation 2 is actually three equations in the two
unknowns kp and ks .  From the ratios of the areas of the
Gaussian fits to the experimental data, we have

    

P

D S+
= 0 396. (3)

    

R

D P S+ +
= 0 409.  . (4)

Solving equations 2, 3, and 4 together, we obtain

kp = 0.41 , ks = 0.50 . (5)

It appears that more light is scattered by the secondary
mirror than by the primary.  It should be noted that the two
components S and D were not resolved in SHADOW results
either.

The effect of scattering on the SO system can be easily
treated with matrix optics by the introduction of random
angles to account for the scattering process.  Usage of matrix
optics is justified for the SO because of the small angles
between the rays and the optical axis and the circular
symmetry of the SO.  Using the notation in Figure 1 for
distances, we introduce the following five matrices:  T1 for
transmission from the pinhole to the primary, R1 for
reflection from the primary, T2 for transmission from the
primary to the secondary, R2 reflection from the secondary,
and, finally, T3 for transmission from the secondary to the
image plane.
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A ray with initial coordinates y0, θ0 on the pinhole plane is
transferred to the image plane according to the equation
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if we disregard the effect of scattering.  Then we have m12 =

-6.46594 × 10-16 ≈  0, m11 = -0.05, and m22 = -20.00 as

expected at a   conjugate plane for a system with a
demagnification of 20.  We also have m21 = -0.015, the

power of the system.  m21 must, in fact, be nonzero for an

imaging system.19  We can include scattering in this

equation by adding random angles     δ̃s  and 
    
δ̃ p  to the angle

coordinates of rays after reflections from the primary and

secondary mirrors.
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where a = 64.9049, b = 176.281, c = 0.05336, and d = 1.  For
a point source (yo = 0) we may write

    
y a bi p b s= ++

˜ ˜δ δ  . (10)

Probability density functions (PDFs) of     δ̃s  and 
    
δ̃p  depend

in general on the angle of incidence θo.  For near normal

incidence, we can assume that PDFs for     δ̃s  and 
    
δ̃p  have no

dependence on θo.  If both mirrors had no scattering, the

additive random angles     δ̃s  and 
    
δ̃p  would have PDFs that

were Dirac delta functions, i.e., both     δ̃s  and 
    
δ̃p  would be

equal to zero. Then we retrieve equation 7.  Estimating the

PDF of scattering angle θ as having a Gaussian distribution,

an assumption borne out by the AFM PSDs, for the primary

(secondary) mirror we can write the PDF for 
    
δ̃p  as,
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where kp(s) is the scattering coefficient as defined earlier,

σp(s) is the standard deviation of the scattering angle, and

δ(θ) is the Dirac delta function. We may rewrite these PSDs

in terms of the position y at the focus by simply multiplying

σp and σs by the factors of     δ̃s  and 
    
δ̃p  in equation 10.  Upon

taking their convolution, we obtain the following PDF for the

light distribution in the focal plane.
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The terms in equation 12 correspond to the R , P, S, D
terms, respectively.  This result proves that the doubly
scattered rays have a distribution that is equal to the
convolution of the distributions of the singly scattered rays.

The ratio of widths of the two components P  and S  is
calculated as

    

r
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σ
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σ
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2

2
(13)

Then rw = b/a = 2.72 ⇔ σs = σp.  That this is  reproduced
by ray tracing simulations can be seen in the values for
σS2/σS1 in Table III for the case of the same PSD on both
mirrors.  In the grating model of scattering, the sine of the
scattering angle is proportional to the local spatial frequency.
If the spatial frequency is distributed according to a Gaussian
PSD, then sin(θ) also has a Gaussian distribution with a
standard deviation proportional to the standard deviation of
the PSD.  Since sin(θ) ~ θ for small angles, we may say the
same for θ itself.  Therefore, the ratio of scattering angles on
the primary and secondary mirrors is equal to the ratio of the
PSD σf’s corresponding to the two mirrors.  We may write

    

r r
a

bfs fp

fs

fp
wσ σ

σ

σ/ = = (14)

We know that the value of rw is 7.1 for the experimental

data.  After substituting in the numerical values of a and b,

we have rσfs/σfp
 = 2.61.  To accurately simulate the

experimental data in SHADOW, we must choose two

different PSDs for the primary and secondary mirrors in

accordance with this relation.  The SHADOW output in

Figure 7 was an initial attempt to do this before the exact
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value of  rσfs/σfp
 above was known.  Its rσfs/σfp

 was 2.0.

As mentioned in the previous section, it describes well the

shape of experimental scattered light distribution, but a better

agreement could be obtained by using a ratio such as

equation 14.   A RMS roughness ∆ was calculated from

equation 1 to be 9.4 Å, a result close to the AFM

measurements and that could also be utilized in a new

simulation.  A σfs of 10715 cm-1 was computed from the

scattering angle inferred from σS2 and was used in a new run

of SHADOW along with the exact ratio.  The outcome of this

final simulation is shown along with the experimental data in

Figure 9.  As can be seen, theoretical calculations are in

excellent agreement with scattering measurements
The origin of two different PSDs on two mirrors coated

with Ru/B4C at the same time may be the manufacturing
process used to create the mirror blanks.  Different turning
and grinding techniques  are used for the convex primary and
concave secondary mirrors and leave different types of
microroughness on the surfaces.  These processes likely
contribute more to correlated and uncorrelated roughness in
the multilayers than the inherent roughness in the multilayers
themselves.  The inherent mulilayer roughness would be  the
same for both blanks.  Thus two different PSDs for the two
mirrors are experimentally possible.

FIG. 9.  Measured and simulated scattered light intensities.
Simulation uses experimental roughness parameters.
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VI.  CONCLUSIONS

We have seen that the experimentally measured
scattered light distribution at the focus of the multilayer-
coated Schwarzschild objective is composed of two
components arising from scattering processes at the two
mirrors.  This distribution can be accurately modeled using
scalar scattering theory with ray tracing in the program
SHADOW.  This leads to a better understanding of the image
formation of a real physical system, which can be useful for,
among other things, choosing surface roughness
characteristics for optics designed for imaging applications.
In this way we do not simply model scattering from a rough
planar system and apply it to a real multimirror imaging
system.  Rather, we study the image formation in conjunction
with scattering in a concrete optical system in order to
understand the effect of scattering at the optical surfaces on
the image.  By this method we can obtain surface roughness
parameters that can be confirmed through independent means
such as AFM.  All in all, we have been able to successfully
model the image  formation of our experimental system, the
Schwarzschild objective, in the  presence of surface
roughness.
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