Synopsis
ID24 is an energy dispersive EXAFS beamline optimized for time-resolved and extreme conditions x-ray absorption spectroscopy.
Status:
open
Disciplines
- Physics
- Earth and Planetary Sciences
- Chemistry
- Materials and Engineering
Applications
- Solid state physics
- Geosciences
- Catalysis
- Materials science
- Environmental science
- Cultural heritage
Techniques
-
XAS - X-ray absorption spectroscopy
-
XMCD - X-ray magnetic circular dichroism
-
XMLD - X-ray magnetic linear dichroism
-
EXAFS - extended X-ray absorption fine structure
-
FTIR - Fourier transform infrared spectroscopy/microscopy
-
X-ray linear dichroism
-
MicroXANES - micro X-ray absorption near-edge structure
Beam size
- Minimum (H x V) : 3.0
x 3.0
µm²
-
Maximum (H x V) : 200.0
x 200.0
µm²
Sample environments
- Large-spot endstation:
- --Microcoil for pulsed magnetic field (30 T, 1ms, duty cycle 10^-4)
- --DRIFTS optics + Varian 670 (mid range) IR spectrometer for synchronous IR
- --Rapid scan acquisition to 25msecs per spectrum; step scan IR to 10's of ns time resolution
- --Mass spectrometry
- Small-spot endstation:
- --Diamond anvil cells
- --Liquid He cryostat (20-300 K) for high pressure cell
- --Permanent magnet (2 T closed gap, 0.7 T with high pressure cell)
- --Microcoil for pulsed magnetic field (30 T, 1ms, duty cycle 10^-4)
Detectors
- Hamamatsu/FRELON Camera (0.2ms readout time)
- ULTRA Si strip detector (12 us readout time)
- Ge XH strip detector (2 us readout time)
- Si PIN diodes
- Si drift diode (Vortex)
Technical details
Time-resolved XAS is available in either film mode (time resolution down to few microseconds) or pump/probe mode.
Single bunch aquisition is available for specific applications
Large-spot endstation: beam size from 10 x 100 μm to 200 x 200 μm (HxV).
Small-spot endstation: beam size from 3 x 3 μm to 10 x 100 μm (HxV).
Chemical tuning of samarium valence in mixed valence (Sm1-Ca )2.75C60 fullerides
Yoshikane N., Nakagawa T., Matsui K., Yamaoka H., Hiraoka N., Ishii H., Arvanitidis J., Prassides K.,
Journal of Physics and Chemistry of Solids 150, 109822-1-109822-6 (2021)
Melting properties by X-ray absorption spectroscopy: common signatures in binary Fe-C, Fe-O, Fe-S and Fe-Si systems
Boccato S., Torchio R., Anzellini S., Boulard E., Guyot F., Irifune T., Harmand M., Kantor I., Miozzi F., Parisiades P., Rosa A.D., Antonangeli D., Morard G.,
Scientific Reports 10, 11663-1-11663-13 (2020)
4f spin driven ferroelectric-ferromagnetic multiferroicity in PrMn2O5 under a magnetic field
Chattopadhyay S., Balédent V., Panda S.K., Yamamoto S., Duc F., Herrmannsdörfer T., Uhlarz M., Gottschall T., Mathon O., Wang Z., Strohm C., Greenblatt M., Foury-Leylekian P., Wosnitza J.,
Physical Review B 102, 094408-1-094408-8 (2020)
Magnetism of Ir5+-based double perovskites: Unraveling its nature and the influence of structure
Laguna-Marco M.A., Arias-Egido E., Piquer C., Cuartero V., Hernandez-Lopez L., Kayser P., Alonso J.A., Barker J.A.T., Fabbris G., Escanhoela C.A., Irifune T.,
Physical Review B 101, 014449-1-014449-11 (2020)
High-pressure structural and electronic properties of CuMO2 (M = Cr, Mn) delafossite-type oxides
Levy D., Greenberg E., Layek S., Pasternak M.P., Kantor I., Pascarelli S., Marini C., Konôpková Z., Rozenberg G.K.,
Physical Review B 101, 245121-1-245121-10 (2020)
EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion
Martini A., Signorile M., Negri C., Kvande K., Lomachenko K.A., Svelle S., Beato P., Berlier G., Borfecchia E., Bordiga S.,
Physical Chemistry Chemical Physics 22, 18950-18963 (2020)