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OUTLINE OF TALK

1. Introduction.  Formulation of the problems.

2. Schell-model-type partially-coherent illumination - extend to 
include treatment of coherent aberrations.

3. Spectral density and intensity distribution of projection 
images - including key instrumental factors.  

4. TIE+Born linear approximation – hybrid theory in order to 
treat much wider class of  objects (not just weak objects). 

5. Phase retrieval from partially coherent images – quest for 
linear theories.

6. Contrast transfer function for homogeneous objects –
a useful special case. 

7. Optimal defocus distance and “automatic phase retrieval” –
Scherzer defocus.

8. Some numerical and experimental examples – direct phase 
retrieval without computation!

9. Conclusions



IMAGING GEOMETRY

Direct problem: find the 
spectral density and time-
averaged intensity distribution 
of projection images

Inverse problem: retrieve 
transmitted phase and 
intensity distributions

“Incident” problem: 
determine incident cross-
spectral density distribution



GENERAL FORMULA FOR SPECTRAL DENSITY
OF PROJECTION IMAGES

Given an incident cross-spectral density 
distribution at the object plane z=0:

and the object transmission function:
),(),(),( νψνν rrr ikeqQ =

one can calculate the spectral density in the image plane z=R2  as:
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[ Based on a  similar expression in Mandel & Wolf ]

where M=(R1+R2)/R1; or after Fourier transformation with respect to r:
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where )/(  ,2/ 2121 RRRRRR +=′′= λα [cf. J-P.Guigay, Opt.Comm., 1978]



SCHELL-MODEL-TYPE PARTIALLY COHERENT ILLUMINATION
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- incident cross-spectral density:

),(  inHere νrS is the incident spectral density,

Consider the following model for the 
incident spectral degree of coherence 
which represents an extension of the Schell 
model illumination:

is the incident spectral degree of 
coherence

),,( νrr′g

Note: |g(r – ro, ν) |  depends only on r-ro

but coherent aberrations can be included 

g(0, ν) =1 =>

Some special cases:
When ψin=0 and R1=∞, this describes a  Schell-model illumination
When also [Sin(r,ν)]1/2[Sin(r',ν)]1/2=Sin((r'+r)/2,ν),  => quasi-homogeneous illumination
When also Sin(r,ν)=const(ν) => spatially incoherent source
When ğ(r,ν)=1, this model includes plane and spherical coherent incident waves  
This model also describes incident radiation on a sample  for typical bending magnet beamlines 



SPECTRAL DENSITY OF PROJECTION IMAGES IN THE CASE OF 
SCHELL-MODEL-TYPE ILLUMINATION

For Schell-model-type incident illumination, 
the expression for the  spectral density in the 
image plane has the same  general form as 
in the case of an extended spatially 
incoherent source:

image plane imaging system coherent image
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is the total MTF of the system,

),(ˆsrc
n νuS is a rescaled Fourier transform of ğ(r,ν)  (it is related to the normalized spectral 

density in the source plane).

),(ˆ νuD is the MTF of the detector, and
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expn of phase => Guigay type condition includes coherent aberrations

is the spectral density in the image plane corresponding to coherent quasi-plane incident illumination
(it reflects both object properties and “coherent aberrations” of the incident illumination)



SOLUTION TO THE DIRECT PROBLEM
IN THE CASE OF SCHELL-MODEL-TYPE ILLUMINATION

The previous formulae can be easily converted into real-space representations:
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is the total PSF of the system. Integrating over ν we obtain the following 
expression for the time-averaged intensity distribution in the detector plane: 
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This formula has the same general form as the corresponding formula for an 
extended spatially incoherent source. However, partial coherence of the incident 
illumination results in a non-trivial distribution of incident spectral density and 
phase, which are both included in Scoh  via the modified transmission function. 

coherent  image (pw) instrument



A MODEL FOR THE MODIFIED TRANSMISSION FUNCTION

Having obtained the general formulae for the spatial distribution of the 
spectral density and polychromatic intensity of a projection image under the 
Schell-model-type illumination, we now consider relevant properties of the 
object under investigation. We assume that the modified transmission function 
(which describes the object transmission properties as well as coherent 
aberrations of the incident wave) can be represented as 
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Here the slowly varying components, are defined as running averages,and hh ϕµ

over distance h=λR'/d, where d is the smaller of the spatial resolution of the 
imaging system and the minimal feature size present in the object.



A MODEL FOR THE MODIFIED TRANSMISSION FUNCTION. 2

In other words, a function is assumed to be representable as a sum of its slowly 
varying (smoothed over distances ~h) version and a rapidly varying residual, 
which is small in magnitude. Note that the TIE and the 1-st Born (Fourier 
Optics) approximations correspond to the cases χh=0 and Qh=const, respectively.
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COHERENT SPECTRAL DENSITY FOR THE TIE+BORN MODEL

If the modified transmission function with amplitude qh satisfies the TIE+Born 
model, then the general non-linear formula for the spectral density distribution of 
a projection image can be linearized with respect to the transmitted phase :
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Here the first line corresponds to the TIE-type approximation applied to the 
slowly varying function Qh , while the second line corresponds to the scattered 
wave in the first-Born-type approximation applied to the small function |Qh|2χh
.Note that both the phase and the intensity terms in this equation contain 
contributions from the incident wave, as well as the object, as by definition 

and  arg~ in Qk += ψϕ ||ln2/)ln(~ in QS −−=µ

TIE (slowly varying) Note:

qh = |Qh|

include both coherent 
aberrations & object properties
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is also linear with respect to the transmitted phase.



IMPORTANT SPECIAL CASES OF THE GENERAL FORMULAE

I. Illumination conditions that are treated
I.1. Partially coherent standard Schell-model illumination: ψin = 0

partially coherent quasi-homogeneous illumination, then also    
(Sin)1/2(r,ν)(Sin)1/2(r/,ν) = (Sin)1/2((r+r/)/2 ,ν)

spatially incoherent source: then also Sin(r,ν) = Sin(ν).
I.2. Coherent quasi-spherical wave: Sn

src(r, ν) = δ(r-r0)  (including abns)
ideal spherical wave: then also ψin = 0 and Sin(r,ν) = Sin(ν)

I.3. Coherent quasi-plane wave: M = 1 (see earlier eqn )

Plane wave: then also ψin = 0 and Sin(r,ν) = Sin(ν)

II.   Object properties that are treated
II.1. Non-absorbing (pure phase) object: µ = 0
II.2. Homogeneous (single material) object: φ(r,ν) =-γ(ν) µ(r,ν), γ = δ /β
II.3. Weak object: µ << 1, |φ(r+αu, ν) - φ(r-αu, ν)| << 1 (i.e. slowly varying  

φ or  weak φ but may be rapidly varying  <=> Guigay assumption)

II.4. Slowly varying object: ∆µh=∆φh= 0.      (TIE)



LINEAR PHASE RETRIEVAL IN THE NEAR-FRESNEL REGION

),,(ˆ),,(ˆ),,(ˆ coh
2 ννν RMSMPRS ′= uuu1. General methods are based on:

Spatial deconvolution removes the effect of the MTF of the imaging system, 
then the phase retrieval is performed as in the coherent case. Note that 
coherent “aberrations” of the incident illumination described by Sin and φin are 
included in Scoh. Separate experiments for characterization of the incident 
illumination need to be carried out in order to quantify these effects.

2. For pure phase and for homogeneous objects the total phase, ,hh ϕϕϕ ∆+=
can be retrieved at once from a single projection image:
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Consider u -> 0

See also re phase retrieval for homogeneous objects:  Paganin et al    J. Microscopy (2002), 206, 11-40.



CONTRAST TRANSFER FUNCTION FOR HOMOGENEOUS OBJECTS
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AUTOMATIC PHASE RETRIEVAL AND DECONVOLUTION

In the case of uniform illumination (ψin = 0 and Sin(r,ν) = Sin(ν)), the spectral 
density distribution of projection images of homogeneous objects with slowly 
varying (on the length scale h=λR'/d, where d is the size of the smallest resolvable 
object feature) and using the modified transmission functions is equal to
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P̂  where is the total MTF of the imaging system.

We now assume that the system PSF is symmetric and its width is of 
the same order as Md. Then the MTF can be approximated by the 
second-order Taylor expansion, 
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AUTOMATIC PHASE RETRIEVAL AND DECONVOLUTION. 
MONOCHROMATIC CASE

Therefore at the defocus distance
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“ideal” imaging system

i.e. the image coincides with the rescaled modified transmission function.  The 
effects of the convolution with the system PSF and the Fresnel diffraction have 
cancelled each other (CTF is constant).  This condition is analogous to the 
Scherzer defocus in electron microscopy, where the Fresnel diffraction effects 
are optimally cancelled by the spherical aberration of an electron microscope.



AUTOMATIC PHASE RETRIEVAL AND DECONVOLUTION. 
POLYCHROMATIC CASE

The optimal defocus distance generally depends on ν. However, it can be shown 
that for weak homogeneous  objects, a projection image at the defocus distance
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By choosing the defocus distance equal to Rd
' in the polychromatic case one 

can achieve an "automatic" simultaneous spatial deconvolution and phase 
retrieval.  The result is achieved by making the Fresnel diffraction counteract 
the blurring due to the finite size of the PSF of the imaging system.  
Compared to conventional "post-processing" methods for image 
deconvolution and phase retrieval, the above "hardware" method has an 
obvious advantage of being insensitive to the image detection noise.



NUMERICAL EXAMPLE OF THE AUTOMATIC PHASE 
RETRIEVAL AND DECONVOLUTION

Polychromatic case
Incident spectral density corresponding to a W  X-ray tube operated at E=30 keV 

Apatite sample with a transverse size of 1.6 x 1.6 mm2 and with maximum thickness 
variation of ~50 µm (max.absorption ~ 30%, max.phase shift ~10 radians) 

Lorentzian source and detector MTFs with σS=2 µm and σD=10 µm, M=2
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EXPERIMENTAL DEMONSTRATION
Polychromatic case

In-line X-ray image of an edge of a 100 µm Polyethylene sheet; microfocus 
source; W target; E = 30 keV; σx = 3.5 µm; R1 = 4 cm, R2 = 196 cm.
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CONCLUSIONS

1. Incident problem: We have derived a “general” formula for the spectral 
density distribution of projection images under partially coherent 
Schell-model-type illumination that includes: coherent plane and 
spherical incident waves, quasi-homogeneous and spatially incoherent 
sources as special cases.

2. Direct problem: We have linearized the formula for partially coherent 
projection images with respect to the transmitted phase distribution 
under the assumption that the coherent aberrations of the incident 
illumination and the object transmission function can be represented as 
the sum of a slowly varying plus a rapidly varying but small component
(TIE+Born approximation).

3. Inverse problem: We have demonstrated that by appropriately choosing 
the defocus distance (NF=δ/β), the effects of image blurring due to the 
finite PSF of the imaging system and the Fresnel diffraction effects can 
be made to cancel each other resulting in a simultaneous automatic 
phase retrieval and spatial deconvolution of partially coherent images 
of homogeneous objects.


