Antiphase Domains and Coherent X-rays

L.-M. Stadler, B. Sepiol, R. Harder, I.K. Robinson, F. Zontone, and G. Vogl

Antiphase domains in B2 intermetallic phases

Detrended Fluctuation Analysis

• We construct the profile $Y(j) = \sum_{i=1}^{j} I_i$

If we consider I_i as **steps** of a random walker, Y(j) corresponds to its position after *j* time steps.

- We split *Y*(*j*) into intervals of scale length s and perform a **polynomial fit** in each interval (DFA1: linear fit, DFA2: quadratic fit and so on).
- $F_n^2(s)$ is the variance in each segment. F(s) is obtained by averaging over all segments and taking the square root, $F(s) = \sqrt{\langle F_n^2(s) \rangle_n}$.

In analogy to above F(s) corresponds to the RMS displacement of the random walker.

Analysis of the correlations in the $Co_{60}Ga_{40}$ (100) superstructure peak:

Is there a possibility to gain information on the exact structure of the antiphase domains?

=> Solve the phase problem!

APDs are indistinguishable by their electron density - they are **phase objects**

=> APD structure is mirrored in the reconstructed phases

Challenge: Can we reconstruct the phases of a non-compact object?

Measurement of the (001) superstructure peak of $Fe_{65}AI_{35}$ (UNICAT 34 ID, APS)

Pixel size 22.5 \Rightarrow 22.5 μ m²; 401 pixels in *y* direction $\bigcirc \Delta Q \odot 2.9 \Rightarrow 10^{-5} \text{ Å}^{-1} \bigcirc \odot 21.5 \ \mu\text{m}$ $\bigcirc \odot 54 \ \text{nm}$ resolution

Measurement results

1 pixel=0.45 µm

The naive Gerchberg-Saxton (GS) approach

Illumination function = image in the object domain

Phases: random start configuration

Reconstructed phases (5000 iterations)

Domain size: Autocorrelation function of the reconstructed phases

Looking for phase jumps that indicate antiphase boundaries

Reconstructed amplitudes in real space (5000 iterations)

Error-reduction algorithm (50 steps) + HIO (200 steps)

Defining the support as 2-sigma region of the Gaussian illumination function

ER-HIO

Reconstructed phases (10050 iterations)

ER-HIO

Domain size: Autocorrelation function of the reconstructed phases

Looking for phase jumps that indicate antiphase boundaries

Reconstructed amplitudes in real space (10050 iterations)

Since the X-ray beam penetrates the sample => three-dimensional reconstruction desired

For a **three-dimensional reconstruction** we need the three dimensional intensity in reciprocal space:

http://groups.mrl.uiuc.edu/Robinson/~gjwillms/research.html

Energy scan of the (001) superstructure peak of $Fe_{65}AI_{35}$ (UNICAT 34 ID, APS)

Pixel size 22.5 \Rightarrow 22.5 μ m²; 401 pixels in *y* direction $\bigcirc \Delta Q$ \odot 2.9 \Rightarrow 10⁻⁵ Å⁻¹ \bigcirc \odot 21.5 μ m \bigcirc \odot 54 nm resolution

Summary

- Detrended Fluctuation Analysis is a proper method for analysing XPCS data of slow dynamics.
- Non-compact phase objects, e.g., antiphase domains, can be reconstructed using information on the illumination function?

Acknowledgements

People

Vienna: B. Pfau, B. Sepiol, G. Vogl

Grenoble: F. Zontone, G. Grübel (now Hamburg)

Halle: J.W. Kantelhardt

Golm: R. Weinkamer, M. Hartmann, P. Fratzl

Berlin: I. Zizak

Argonne: R. Harder, I.K. Robinson

Money

This work was financially supported by the Austrian Federal Ministry for Education, Science and Culture (project GZ 45.529/2-VI/B/7a/2002) and the Hahn-Meitner-Institute Berlin in cooperation with the University of Potsdam.

Thank you for your attention!