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Different Regimes of X-ray Imaging ‘
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Image Reconstruction in Different Regimes ‘

= Absorption regime
 straightforward, based on intensity attenuation
« 3D tomographic reconstruction

= Phase contrast regime N\
** edge-enhanced shape recognition
* transport of intensity equation (TIE)
“* holotomographic method based on Tolbot effect

= In-line holographic regime

< holographic reconstruction M Unified Method ?
“* twin-image problem

= Far-field regime
¢ iterative phasing method
** Fourier transforms in real and reciprocal space
** requires oversampled diffraction pattern
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Ilterative Method in Far-field Diffraction

Gerchberg & Saxton, Optik 35, 237 (1972)

Fienup, Appl. Opt. 21, 2758 (1982) s
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Fresnel Wave Field Propagation ‘

object plane =» Fresnel formula for wave propagation
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= Wave-field in the object plane R=(x2+y2+z2)12

u(x,y,0) =exp(-ik _[_000 (0(x,y,2)—18(x,Y,2))dz)
u(x, y,0) = Aexp(-14(x, y,0)) = a(x, y,0) +1b(x, y.0) Van der Veen & Pfeiffer,
J. Phys.: Condens.

0
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Distorted Object Approach

=

object near-field far-field
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= Unified wave propagation
method by Fourier transform

Momentum transfer: (Q,, Q,) = (kX/z, kY/z)

Number of Fresnel zones: N, = a?%/(1z)

Xiao & Shen, PRB, in press (July 2005)

Phase-chirped distorted object:
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()

Simulated diffraction amplitudes |F(X,Y)|, of an

Fig.2:
amplitude object (a) of 10um x 10um, with 1 = 1 A x-rays, at
image-to-object distance (b) z = 2mm and (c) z = o, using
the unified distorted object approach (above) with N, = 500
zones in (b) and N, = 0 in (c). Notice that the diffraction
pattern changes from noncentrosymmetric in the near-field
(b) to centrosymmetric in the far-field (c).
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Iterative Phasing with Distorted Object =

L (I F
> T(x,y) =u(x, y)e /Iz( ) l Start
Modified u(x,y) G=|G| exp(ig) J
Real space Fourier space
constraints constraints
New u(x,y) G=|F| exp(ig)

u(x, y)=u(x,ye g F-1
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Oversampling @ 2x Nyquist f = Correct Sampling ‘
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=> Minimum oversampling ratio is 2,
regardless whether it is 1D, 2D or 3D.

27 1 «
AOLD — % - _ %
Qe L 2 L

27 1 J2r
A 2D = . =
Qmax L ﬁ L
2= 2

=> Sampling at frequency 2n/L in
Fourier space is not fine enough to
resolve interference fringes!

=> Additional measurements in-
between 2n/L are necessary to tell us
some interference is going on.

X-ray wavelength is A, object’s half width a,
object-image distance z, and oversampling
factor O, the pixel size of detector

AX<—2 N =2
20-N A-Z

z
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Numerical Simulation Example ‘

Material: Carbon; Object size: 10x10 micron; Maximum thickness ~10 2z m;
X-ray: 1A; Maximum phase difference ~1.87rad; Absorption contrast~0.1%;

Oversampling factor: 2x2.

. B 3
0
(] =
e 3
z =100cm 7= ©
N,=0.25 N,=0
10
: 108
AX =0.25um AX=1um AX=2.5um AX=5um AX oc Z
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Phasing Results

in press (July 2005)

PRB,

Xiao & Shen
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Comparisons with Far-field
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* Correlation coefficient
between reconstructed phase
map and the original phase
map as a function of number
of iterations in the iterative
phase retrieval using the
distorted object approach.

« Statistical Poisson noises
are included in all diffraction
patterns in these simulations.

* All these diffraction patterns
are assumed to have the
same total integrated intensity
of 4.4x107 photons.

* Maximum intensity in the
diffraction patterns are
7.6x105, 6.2x1068, 8.8x10° and
1x107 photons, for z = 20cm,
50cm, 100cm, and far-field,
respectively.

=
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Distorted Object & Astigmatic Diffraction =

K.A. Nugent et al, Acta Cryst. A61, 373-381, (2005)
U(X,Y) = j ) j " u(x,,0)-exp(i 22 L) -exp(i2z (X2 + L) dxdy

— »
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Astigmatic diffraction (curved beam) method: create parabolic or
spherical wave front with K-B mirror, FZP lens

Distorted object method: move detector a little bit closer to the
sample comparing with conventional far-field imaging
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Test Experiment at 32-1D-B

lens- pinhole monochromator
coupled 5um mirror C(111) L

APS
undulator A

ﬁg\?"\%\ 8.2 keV : F

\ horizontal
slits
(~100um)

Dr. Xianghui Xiao (CHESS,
Cornell University)

=
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Specimen Used in Experiment =




Preliminary Results on Myocytes :

e Data obtained June 10-12, 2005

» Multiple images with different exposure times
to avoid saturation (need stitching)

Z =277 mm
N, = 0.15, AX < 8um
Ax =100nm

Z =910 mm
N, = 0.045, AX < 27um
Ax = 330nm

Z =455 mm
N, = 0.09, AX < 14um
Ax =160nm
e Images at several z with N, = 0.045 - 0.45
e Data processing in progress ....

Qun Shen June 15, 2005
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Improving Experimental Setup

* Pinhole scattering = need scatter shields McNulty & Lai
» Use multiple silicon nitride windows
* Need four independent x-y translations

=l

* Need CCD with larger dynamic range
* Perhaps a hybrid direct/lens-coupled CCD
* Finer CCD pixel size

5>rﬂH—

» Optical telescope for sample viewing & centering

un Shen June 15, 2005 16




Imaging Beamline at Sector 32

y %\vc o

0

=

O Consideration of making
Sector 32 (Com-CAT) a dedicated
imaging XOR-Sector:

U Many Benefits:

imaging group to satisfy users
demand, to expand user base, and to
test new application & ideas.

proceed to become a dedicated high-
energy sector.

perhaps into a long beam line (~200m)
with optimized insertion devices.

O Current Status: starting to
perform coherent imaging experiments,

and to plan for beam line extension.

Phase imaging / tomography
Diffraction topography

Diffraction enhanced /USAXS imaging
Coherent Fresnel diffraction

Provides immediate home for the

Frees up 1-ID so Sector 1 can

Potential for future expansion

Qun Shen June 15, 2005
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Proposed Project for a Dedicated Imaging Sector ‘

Phase I: make use of existing
hutch and equipment, with upgrades
to monochromator & Be windows

- Phase imaging
—> Diffraction topography
- USAXS imaging

Phase Il: expansion to ~75m by
building a new white-beam capable
hutch at 75m and beam transport

- High-sensitivity phase imaging
- Coherent Fresnel diffraction
-> Projection microscopy

Main Research Programs:

» Near-field diffraction and imaging
» Optics development
» Ultrafast imaging with pink beam

Existing : e vl : \
Sector 32 |' ___i! —_—
\ 32-ID-C
L _||=i S i--'||_'||
| I L 1
75 m

Phase lll: future expansion to
~200m (ID-D) with additional outside

funding, and with optimized insertion
devices and optics

- Ultra-sensitivity phase imaging
- Ultra-plane-wave topography
- Medical imaging ?

Qun Shen June 15, 2005
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Other Applications of Distorted Object

2D Gaussian phase object
= Analytical expressions

O Phase imaging sensitivity study
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Dose vs. Resolution & Radiation Damage

(biomaterials)

Required 8 keV X-ray Dose (Gy)

Miao (2001): 0.25nm —=QO
(simulation)
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Optics Express (2003)
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Summary A

«* Distorted Object Approach provides a simple universal method for
wave field propagation by fast Fourier transform, in both far-field and
near-field regimes.

« Distorted Object Approach extends the iterative phasing algorithm to
near-field and provides an alternative to far-field coherent diffraction
imaging and to astigmatic diffraction with curved beams. It eliminates
the Friedel enantiomorph phasing ambiguity in the far-field.

«* Practical imaging applications may be in the region where Fresnel
number N, lies between 0.2 — 1, so that requirement on detector pixel
size is relaxed but significant Fresnel zone curvature still exists.

« Other applications include design of phase imaging beam line, and
phase-sensitive x-ray diffraction topography.

< APS plans to expand in x-ray imaging, including to plan for a bio-
nanoprobe beam line, to build a full-field imaging beam line for coherent
imaging applications.

Qun Shen June 15, 2005
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