

Phase retrieval in tomography with Kirkpatrick-Baez mirrors

Rajmund Mokso

European Synchrotron Radiation Facility Grenoble

Collaborators: Peter Cloetens, Wolfgang Ludwig, Olivier Hignette, Eric Maire

Motivation

Improve the spatial resolution of tomographic scans

adapt phase retrieval algorithms to the focusing geometry

Outline

THE GEOMETRY

KB - Geometry

Source

f1=145m

Focus

source

demagnification: f1/f2 => theoretical best focus spot= 87x45 nm

dose efficient overcome resolution of detector compatible with fluorescence

with multilayer

THE DISTORTION

refraction by the sample

dust particles on the mirror

Local tomography

the projections - preprocessing of data

The equivalences between parallel and cone beam

$$\mathbf{D} = \frac{\mathbf{Z}_1 \cdot \mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2}$$

$$\Lambda = \frac{z_1 + z_2}{z_1}$$

Rel. phase map from magnified fresnel diffraction patterns

D = **42**5mm

Rel. phase map from magnified fresnel diffraction patterns brought to same magnification

phase retrieval

E.J. Kirkland, Ultramicroscopy 15,151 (1984)

Slowly-varying phase

Weak object approximation

the approximations

$$T = e^{-B(x)} \cdot e^{i\phi(x)}, B(x) << 1$$

the basic formula

$$\tilde{I}_D(f) \approx \delta(f) + 2\sin(\pi\lambda Df^2).\tilde{\varphi}(f) - 2\cos(\pi\lambda Df^2).\tilde{B}(f)$$

phase contrast factor

absorption contrast factor

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, M. Schlenker, Rev. Sci. Ins., in press

paroboloid method

M.Op de Beeck, D. Van Dyck and W. Coene, Ultramicroscopy 64,167 (1996)

P. Cloetens, PhD thesis 1999

comparing the different approaches

quality of images implies the use of image processing tools in order to obtain 3D volumes that can be segmented

Si located at grain boundaries

AlSi

3D visualisation

Paraboloid method

Al₂Cu alloy in 3D

Outlook – iterative method

summary & perspectives

• Overview of the processing for magnified tomography

correct distortion *correct magnification* phase retrieval

tomographic reconstruction

- Artefacts: Perturbation of the wavefront introduced by the mirror shape Flatfield fails in case of strong phase gradients
- Local tomography offers the "easy" solution
- Phase retrieval on alloys with satisfactory results applying the weak-object approximation or the <u>paraboloid method</u>

 Implement different iterative approaches consider as far-field with curvature
Implement phase unwrapping

• Spatial resolution in tomography improved in comparison to the highest resolution optics

